a,b,c trong đó có đúng một số lẻ và h...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

Ta có \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)\)

Áp dụng, ta có \(\left(a+b+c\right)^3-\left(a+b-c\right)^3=\left(a+b+c-a-b+c\right)^3+3\left(a+b+c\right)\left(a+b-c\right)\left(a+b+c-a-b+c\right)=\left(2c\right)^3+3\left(a+b+c\right)\left(a+b-c\right).2c=\left(2c\right)^3+6c\left(a+b+c\right)\left(a+b-c\right)\left(1\right)\)\(\left(b+c-a\right)^3+\left(a+c-b\right)^3=\left(b+c-a+a+c-b\right)^3-3\left(b+c-a\right)\left(a+c-b\right)\left(b+c-a+a+c-b\right)=\left(2c\right)^3-3\left(b+c-a\right)\left(a+c-b\right).2c=\left(2c\right)^3-6c\left(b+c-a\right)\left(a+c-b\right)\left(2\right)\)Từ (1),(2)\(\Rightarrow\left(a+b+c\right)^3-\left(a+b-c\right)^3-\left(b+c-a\right)^3-\left(a+c-b\right)^3=\left(2c\right)^3+6c\left(a+b+c\right)\left(a+b-c\right)-\left[\left(2c\right)^3-6c\left(b+c-a\right)\left(a+c-b\right)\right]=\left(2c\right)^3+6c\left(a+b+c\right)\left(a+b-c\right)-\left(2c\right)^3+6c\left(b+c-a\right)\left(a+c-b\right)=6c\left(a+b+c\right)\left(a+b-c\right)+6c\left(b+c-a\right)\left(a+c-b\right)=6c\left(a^2+2ab+b^2-c^2+ab+bc-b^2+ac+c^2-bc-a^2-ac+ab\right)=6c\left(4ab\right)=24abc\)Vậy \(\left(a+b+c\right)^3-\left(a+b-c\right)^3-\left(b+c-a\right)^3-\left(a+c-b\right)^3=24abc\)(3)

Ta có a,b,c sẽ có một số lẻ và 2 số chẵn nên \(abc⋮4\Rightarrow24abc⋮96\left(4\right)\)

Từ (3),(4)\(\Rightarrow\left(a+b+c\right)^3-\left(a+b-c\right)^3-\left(b+c-a\right)^3-\left(a+c-b\right)^3⋮96\)

13 tháng 3 2017

tớ nghĩ là theo nguyên lí ''thỏ'' và''chuồng''

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

23 tháng 6 2016

\(VT=\frac{1-a}{a}.\frac{1-b}{b}.\frac{1-c}{c}=\frac{b+c}{a}.\frac{a+c}{b}.\frac{a+b}{c}\ge\frac{2\sqrt{bc}}{a}.\frac{2\sqrt{ac}}{b}.\frac{2\sqrt{ab}}{c}=8\)

18 tháng 12 2019

\(\frac{\Sigma_{cyc}a^3\left(b-c\right)}{\Sigma_{cyc}a^2\left(b-c\right)}=\frac{-\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}=a+b+c\ge3\sqrt[3]{abc}\)

18 tháng 12 2019

Phùng Minh Quân BĐT cuối: \(a+b+c\ge3\sqrt[3]{abc}\) xảy ra khi a = b = c thì cái mẫu thức: \(\Sigma_{cyc}a^2\left(b-c\right)=0\) vô lí!

23 tháng 1 2019

1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:

\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)

\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )

Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

20 tháng 8 2017

*)Giả sử với \(n=2\) đặt \(\hept{\begin{cases}2x=b+c-a\\2y=a-b+c\\2z=a+b-c\end{cases}\left(x,y,z>0\right)}\)

\(\Rightarrow a=y+z;b=x+z;c=x+y\)

BĐT cần chứng minh là \(xy^3+yz^3+xz^3-xyz\left(x+y+z\right)\ge0\)

Tự C/M cái này bằng AM-GM nhé

*)Giả sử đúng với n (tức là dạng t/q). KO mất tính tổng quát giả sử \(a\ge b\ge c\)

Khi đó ta có: \(b^nc(b-c)\ge-a^nb(a-b)-c^na(c-a)\)

\(\Rightarrow b^{n+1}c(b-c)\ge-a^nb^2(a-b)-c^nab(c-a)\)

Nên \(a^{n+1}b(a-b)+b^{n+1}c(b-c)+c^{n+1}a(c-a)\)

\(\ge a^{n+1}b(a-b)-a^nb^2(a-b)-c^nab(c-a)+c^{n+1}a(c-a)\)

\(=a^nb(a-b)+b^nc(b-c)+c^na(c-a)\ge0\) 

Theo nguyên lí quy nạp thì có ĐPCM