
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


bình phương 2 vế ta được a^2+b^2+2ab<(ab^2)+2ab+1
(ab^2)+1-a^2-b^2>0
(a^2-1)(b^2-1)>0
Mặt khác a^2<1 và b^2<1 (do trị tuyệt đối a và b nhỏ hơn 1)
suy ra đpcm
k đúng cho mk nhé

vì 1 < a => 1 + a < 2a
b < c => b + c > 2b
theo giả thiết 1 < a < b + c < a + 1
=> 2b < 2a
=> b < a

\(a,\)Vì \(a< b\Rightarrow a-b< 0\)
\(\Leftrightarrow\sqrt{a}^2-\sqrt{b}^2< 0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)< 0\)
Mà \(a,b>0\Rightarrow\sqrt{a}+\sqrt{b}>0\)
\(\Rightarrow\sqrt{a}-\sqrt{b}< 0\)
\(\Rightarrow\sqrt{a}< \sqrt{b}\left(đpcm\right)\)
\(b,\)Ta có:\(a\ge0;b>0\Rightarrow\sqrt{a}+\sqrt{b}>0\)
Vì\(\sqrt{a}< \sqrt{b}\Rightarrow\sqrt{a}-\sqrt{b}< 0\)(1)
Nhân hai vế của (1) với \(\sqrt{a}+\sqrt{b}\).Mà theo cmt thì \(\sqrt{a}+\sqrt{b}>0\)nên khi nhân vào thì dấu của BPT (1) không đổi chiều
\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)< 0\left(\sqrt{a}+\sqrt{b}\right)\)
\(\Leftrightarrow\sqrt{a}^2-\sqrt{b}^2< 0\)
\(\Leftrightarrow a-b< 0\)
\(\Rightarrow a< 0\left(đpcm\right)\)

a) Vì a,b không âm nên căn có nghĩa.
Ta có: \(\sqrt{a}\) = \(a^2\) ; \(\sqrt{b}\) = \(b^2\)
Vì a < b nên \(a^2\) < \(b^2\)
=> \(\sqrt{a}\) < \(\sqrt{b}\) (dpcm)
b) Vì a, b không âm nên căn có nghĩa.
Ta có: \(\sqrt{a}\) < \(\sqrt{b}\) => \(\left(\sqrt{a}\right)^2\) < \(\left(\sqrt{b}\right)^2\) => a < b (dpcm)
vì 0 \(\le\)|a|,|b| < 1 nên a2 < 1 ; b2 < 1
\(\Rightarrow\left(a^2-1\right)\left(b^2-1\right)>0\Rightarrow a^2b^2-a^2-b^2+1>0\)
\(\Leftrightarrow a^2b^2+1>a^2+b^2\Leftrightarrow a^2b^2+2ab+1>a^2+2ab+b^2\)
\(\Leftrightarrow\left(ab+1\right)^2>\left(a+b\right)^2\Leftrightarrow\left|ab+1\right|>\left|a+b\right|\)