Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
2317 không chia hêt cho 3, 5
vì 2+3+1+7=13 mà 13 kô chia hêt cho 3
vì 7 kô chia hết cho 5
Gọi 3 số đó lần lượt là 2K;2K+1 và 2K+2
Theo đề bài ra ta có thì phải chứng minh trong 3 STN liên tiếp phải có tổng 2 số tự nhiên bất kì chia hết cho 2
Vậy ta có 3 TH là 2K+(2K+2) và 2K+2K+1 và (2K+2)+(2K+1)
Xét TH1: 2K+(2K+2)
Ta có: 2K+(2K+2)= (2K+2K)+2 =4K+2
Vì 4 chia hết cho và 2 chia hết cho 2 => 4K+2 chia hết cho 2
Xét TH2: 2K+(2K+1)
Ta có: 2K+(2K+1)= (2K+2K)+1= 4K+1
Vì 4 chia hết cho 2 => 4K chia hết cho 2 nhưng 1 không chia hết cho 2
=> 4K+1 không chia hết cho 2
Xét TH3: (2K+2)+(2K+1)
Ta có: (2K+2)+(2K+1)= (2K+2K)+(1+2)= 4K+3
Vì 4 chia hết cho 2 => 4K chia hết cho 2 nhưng 3 không chia hết cho 2
=> 4K+3 không chia hết cho 2
Từ 3 TH trên => trong 3 số tự nhiên bất kỳ, bao giờ cũng có thể tìm được 2 số sao cho tổng của chúng chia hết cho 2.
\(3xa+8xb⋮19\)
\(\Rightarrow3x\left(3xa+8xb\right)⋮19\)
\(3x\left(3xa+8xb\right)=9xa+24xb=\left(9xa+5xb\right)+19xb⋮19\)
\(19xb⋮19\Rightarrow9xa+5xb⋮19\)
a, aaa có tổng các chữ số là a+a+a = 3xa
Nên aaa luôn luôn chia hết cho a
b, Có: 6 đồng dư với 1 (mod 5)
=> 6 ^100 đồng dư vs 1^100 đồng dư với 1 ( mod 5)
=> 6^100 chia 5 dư 1
=> 6^100 - 1 chia hết cho 5
c, Xét aaa có a = 1, 2, 3, 4, 5, 6, 7, 8, 9
aaa chia hết cho 9 khi 3a chia hết cho 9 khi a = 3 hoặc a = 9
Toonggr các chữ số của aaa là a+a+a=3a.Mà 3a chia hết cho 3.=>aaa chia hết cho 3
Gọi 3 số tự nhiên liên tiếp lần lượt là: n, n+1, n+2
Ta có: n+ (n+1) + (n+2) = 3n + 3 = 3(n+1) chia hết cho 3
vì 450 có tổng các chữ số là: 4+5+0=9 mà 9 chia hết cho 3 => 450 chia hết cho 3
4+5+0=9 nên 9:3 được thì chia hết cho 3