\(\frac{a}{b}\)=\(\frac{c}{d}\)ta có tỉ lệ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

Mấy bài dạng này có nhiều cách giải, cách đặt dưới đây luôn thực hiện được

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) suy ra a =b.k và c =d.k

thay a=b.k vào tỉ số thứ nhất, biến đổi và rút gọn cho b2 ta được (4.k2-3k)/(9.k2+7)    (1)

thay c=d.k vào tỉ số thứ hai, biến đổi và rút gọn cho d2 ta được (4.k2-3k)/(9.k2             (2)

Từ (1) và (2) suy ra  đpcm

24 tháng 7 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)

Ta có: \(\frac{4a^2-3ab}{9a^2+7b^2}=\frac{4\left(bk\right)^2-3b^2k}{9\left(bk\right)^2+7b^2}=\frac{4b^2k^2-3b^2k}{9b^2k^2+7b^2}=\frac{b^2\left(4k^2-3k\right)}{b^2\left(9k^2+7\right)}=\frac{4k^2-3k}{9k^2+7}\left(1\right)\)

Lại có: \(\frac{4c^2-3cd}{9c^2+7d^2}=\frac{4\left(dk\right)^2-3d^2k}{9\left(dk\right)^2+7d^2}=\frac{4d^2k^2-3d^2k}{9d^2k^2+7d^2}=\frac{d^2\left(4k^2-3k\right)}{d^2\left(9k^2+7\right)}=\frac{4k^2-3k}{9k^2+7}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{4a^2-3ab}{9a^2+7b}=\frac{4c^2-3cd}{9c^2+7d}\)

24 tháng 12 2021

giúp mình với, mai mình kiểm tra cuối kỉ rồi

25 tháng 11 2019

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)

\(\Rightarrow\frac{2a}{2c}=\frac{7b}{7d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2a}{2c}=\frac{7b}{7d}=\frac{2a+7b}{2c+7d}\) (1).

\(\frac{2a}{2c}=\frac{7b}{7d}=\frac{2a-7b}{2c-7d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{2a+7b}{2c+7d}=\frac{2a-7b}{2c-7d}.\)

\(\Rightarrow\frac{2a+7b}{2a-7b}=\frac{2c+7d}{2c-7d}\left(đpcm\right).\)

Chúc bạn học tốt!

26 tháng 2 2020

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

ta có : \(\frac{4a-3b}{a}=\frac{4bk-3b}{bk}=\frac{b\left(4k-3\right)}{bk}=\frac{4k-3}{k}\)

\(\frac{4c-3d}{c}=\frac{4dk-3d}{dk}=\frac{d\left(4k-3\right)}{dk}=\frac{4k-3}{k}\)

\(\Rightarrow\frac{4a-3b}{a}=\frac{4c-3d}{c}\)

25 tháng 3 2020

Bạn tham Khảo: https://hoc24.vn/hoi-dap/question/230602.html

4 tháng 1 2018

TỰ TÚC NHA!

19 tháng 2 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow a=bk;c=dk\)

\(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2b^2k^2-3b^2k+5b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+5}{3k+2}\)

\(\frac{2c^2-3cd+5d^2}{2d^2+3cd}=\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+5}{3k+2}\)

nên 2 phân số trên bằng nhau (đpcm)

19 tháng 2 2019

Đặt: \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có : \(\frac{2a^2-3ab+5b^2}{2b^2+3ab}\)

<=> \(\frac{2b^2k^2-3b^2k+5b^2}{2b^2+3b^2k}\)

<=> \(\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}\)

<=> \(\frac{2k^2-3k+5}{2+3k}\left(1\right)\)

Ta có: \(\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)

<=> \(\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}\)

<=> \(\frac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}\)

<=> \(\frac{2k^2-3k+5}{2+3k}\left(2\right)\)

Từ 1 và 2 => đpcm