Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left(\left(a+b\right)^2-c^2\right)\left(c^2-\left(a-b\right)^2\right)\)
\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)
Vì a, b, c là 3 cạnh của tam giác nên tổng của 2 cạnh luôn lớn hơn 1 cạnh và 3 cạnh đều dương
Nên \(\Rightarrow m>0\)
M=4a2b2-(a2+b2-c2)2
=(2ab)2-(a2+b2-c2)2
=(2ab-a2-b2+c2)(2ab+a2+b2-c2)
=(c2-a2+2ab-b2)(a2+2ab+b2-c2)
=[c2-(a2-2ab+b2)][(a2+2ab+b2)-c2]
=[c2-(a-b)2][(a+b)2-c2]
=(c-a+b)(c+a-b)(a+b-c)(a+b+c)
A B C D I cho tam giác ABC có ab<ac
kẻ AD là phân giác góc A, kẻ DI sao cho AI = AB
ta có tam giác ABD= tam giácAID (c.g.c)
=>góc B = AID (tương ứng )
Mà AID = góc C +IDC (góc ngoài tam giác IDC )
=>góc AID > góc C hay góc B > góc C
b) tương tự câu a
c) dựa theo tính chất đường trung bình của 1 tam giác là đường nối trung điểm của hai cạnh bất kì và // , =1/2 cạnh còn lại
Câu b:
Trong hình thang ABCD (AB//CDAB//CD)
Kẻ BE//ADBE//AD
Ta có:
BE=AD (hình thang có 2 cạnh bên song song)
Trong ΔBECΔBEC có:
BC+BC>EC
Hay AD +BC >CD-AB
xet tam giac MNC va tam giac ABC, taco:
goc MCN = goc ACB
MC/AC=NC/BC=1/2
=>tam giác MNC đồng dạng với tam giác ABC (c.g.c)(định lí ta lét)
=>MN=AB/2=4
ta có tam giác MNC đồng dạng với tam giác ABC
=> MN//AC(định lí ta lét đảo)