\(A=19^k+5^k+1995^k+1996^k\)(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2016

a/ Với k = 0 thì A = 1 + 1 + 1 + 1 = 4 = 22, là số chình phương, vô lí

Mk sửa thành k thuộc N*, k chẵn

A = 19k + 5k + 1995k + 1996k

A = (...1) + (...5) + (..5) + (...6)

A = (...6) + (...5) + (...6)

A = (...1) + (...6) = (...7), không là số chình phương

b/ B = 20042004k + 2001

Với k = 0, B = 20042004.0 + 2001 = 20040 +2001 = 1 + 2001 = 2002, không là số chính phương

Với k khác 0, cách 1: Vì 2004 chia hết cho 3 => 20042004k chia hết cho 9 mà 2001 chia hết cho 3 mà không chia hết cho 9

=> B chia hết cho 3 mà không chia hết cho 9, không phải số chính phương

Cách 2: B = 20042004k + 2001

B = (20044)501k + 2001

B = (...6)501k + 2001

B = (...6) + 2001

B = (...7), không là số chính phương

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

Các bạn có thấy lời giải này có vấn đề không ạ? Nếu có thì chữa lại giúp mình ạ. Các bạn đọc kĩ nhé, mình nghĩ là có ... Đề bài: Chứng minh rằng với mọi số nguyên dương \(n\ge3\) thì: \(2^n>2n+1\)   (1)                     ( chứng minh bằng phương pháp quy nạp toán học)Giải: Với n=3 thì 2^3 = 8 , 2n+1 = 2.3+1=7 . Rõ ràng vế trái lớn hơn vế phải. Vậy (1) đúng với n=3 .Giả sử (1)...
Đọc tiếp

Các bạn có thấy lời giải này có vấn đề không ạ? Nếu có thì chữa lại giúp mình ạ. Các bạn đọc kĩ nhé, mình nghĩ là có ...

 Đề bài: Chứng minh rằng với mọi số nguyên dương \(n\ge3\) thì: \(2^n>2n+1\)   (1)  

                   ( chứng minh bằng phương pháp quy nạp toán học)

Giải:

 Với n=3 thì 2^3 = 8 , 2n+1 = 2.3+1=7 . Rõ ràng vế trái lớn hơn vế phải. Vậy (1) đúng với n=3 .

Giả sử (1) đúng với n=k \(\left(k\in N,k\ge3\right)\) , tức là:

\(2^k>2k+1\)

Ta phải chứng minh \(2^{k+1}>2\left(k+1\right)+1\) hay \(2^{k+1}>2k+3\) (2)

Thật vậy: 

\(2^{k+1}>2.2^k\) , mà \(2^k>2k+1\) (theo giả thiết quy nạp)

Do đó: \(2^{k+1}>2\left(2k+1\right)=\left(2k+3\right)+\left(2k-1\right)>2k+3\) ( Vì 2k-1 > 0 )

Vậy (2) đúng với mọi \(k\ge3\)

 => \(2^n>2n+1\) với mọi số nguyên dương n và \(n\ge3\)

 

 

1
3 tháng 5 2017

sai:2k+1>2.2k

       2k+1=2.2k

sửa lại thì có thể đúng :v

12 tháng 7 2017

a) Do \(1010\le n\le2016\)nên:

                \(\sqrt{20203+21\times1010}\le a_n\le20203+21\times2016\)\(\Leftrightarrow204\le a_n\le250\)

b) Ta có:

\(a^2_n=20203+21n=\left(21\times962+1\right)+21n\)

\(\Leftrightarrow a^2_n-1=21\times\left(962+n\right)=3\times7\times\left(962+n\right)\)

\(\Rightarrow\left(a_n-1\right)\left(a_n+1\right)⋮7\Leftrightarrow\hept{\begin{cases}\left(a_n-1\right)⋮7\\\left(a_n+1\right)⋮7\end{cases}}\)

Hay \(a_n+1=7k\)hoặc \(a_n-1=7k\)\(\Rightarrow a_n=7k-1\)hoặc \(a_n=7k+1\left(k\in N\right)\)

\(\Rightarrow dpcm\)