Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1\(\frac{9}{8}.\frac{9}{3}=\frac{81}{24}\)
Câu 2 \(\frac{19}{5}+\frac{9}{5}=\frac{28}{5}\)
Câu 3 \(\frac{31}{7}:\frac{22}{5}=\frac{31.5}{7.22}=\frac{155}{154}\)
Câu 4 \(\frac{12}{1}-\frac{31}{5}=\frac{60}{5}-\frac{31}{5}=\frac{29}{5}\)
\(3+\frac{2}{5}-\frac{3}{4}\times\frac{4}{5}\)
\(=3+\frac{2}{5}+\frac{3}{5}\)
\(=3+1\)
\(=4\)
1) \(4\frac{3}{10}=\frac{43}{10};21\frac{7}{100}=\frac{2107}{100};7\frac{39}{100}=\frac{739}{100};6\frac{123}{1000}=\frac{6123}{1000}\)
2)\(a,5\frac{2}{10}+7\frac{1}{10}=\frac{52}{10}+\frac{71}{10}=\frac{123}{10}\)
\(b,5\frac{6}{7}-3\frac{5}{7}=\frac{41}{7}-\frac{26}{7}=\frac{15}{7}\)
\(c,8\frac{3}{5}x2\frac{6}{7}=\frac{43}{5}x\frac{20}{7}=\frac{172}{7}\)
\(d,1\frac{3}{10}:5\frac{7}{8}=\frac{13}{10}:\frac{47}{8}=\frac{13}{10}x\frac{47}{8}=\frac{611}{80}\)
3) \(7\frac{9}{10}và4\frac{9}{10}\)
Ta có: \(7\frac{9}{10}=\frac{79}{10};4\frac{9}{10}=\frac{49}{10}\)
Suy ra: \(\frac{79}{10}>\frac{49}{10}hay7\frac{9}{10}>4\frac{9}{10}\)
\(6\frac{3}{10}và6\frac{5}{9}\)
Ta có: \(6\frac{3}{10}=\frac{63}{10};6\frac{5}{9}=\frac{59}{9}\)
Suy ra: \(\frac{63}{10}>\frac{59}{9}hay6\frac{3}{10}>6\frac{5}{9}\)
Bài 1:
Ta thấy:
\(\frac{1}{2}>\frac{1}{6};\frac{1}{3}>\frac{1}{6};\frac{1}{4}>\frac{1}{6};\frac{1}{5}>\frac{1}{6};\frac{1}{6}=\frac{1}{6}\)
\(=>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}\)
\(=>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{5}{6}\)
Bài 2:
Đặt \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{1517}\)
Ta thấy \(\frac{1}{5}=\frac{1}{1.5};\frac{1}{45}=\frac{1}{5.9};\frac{1}{117}=\frac{1}{9.13}\)
Theo quy luật như vậy ta có các số tiếp theo là:
\(\frac{1}{13.17}=\frac{1}{221};\frac{1}{17.21}=\frac{1}{357};\frac{1}{21.25}=\frac{1}{525};\frac{1}{25.29}=\frac{1}{725};...\)
Ta có \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{1517}\)
\(=>A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{27.31}\)
\(=>4A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{27.31}\)
\(=>4A=\frac{5-1}{1.5}+\frac{9-5}{5.9}+\frac{13-9}{9.13}+...+\frac{31-27}{27.31}\)
\(=>4A=\frac{5}{1.5}-\frac{1}{1.5}+\frac{9}{5.9}-\frac{5}{5.9}+\frac{13}{9.13}-\frac{9}{9.13}+...+\frac{31}{27.31}-\frac{27}{27.31}\)
\(=>4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{27}-\frac{1}{31}\)
\(=>4A=1-\frac{1}{31}=\frac{30}{31}=>A=\frac{30}{31}.\frac{1}{4}=\frac{15}{62}\)
\(3+\frac{2}{5}-\frac{3}{4}\)X \(\frac{4}{5}\)
\(=\frac{3}{1}+\frac{2}{5}-\frac{3}{5}\)
\(=\frac{17}{5}-\frac{3}{5}\)
\(=\frac{14}{5}\)
\(3+\frac{2}{5}-\frac{3}{4}\times\frac{4}{5}\)
\(=3+\frac{2}{5}-\frac{3}{5}\)
\(=3+\frac{-1}{5}\)
\(=\frac{15}{5}+\frac{-1}{5}\)
\(=\frac{14}{5}\)
\(5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+\left(5^7+5^8+5^9\right)\)
\(=5\times\left(1+5+5^2\right)+5^4\times\left(1+5+5^2\right)+5^7\times\left(1+5+5^2\right)\)
\(=5\times31+5^4\times31+5^7\times31\)
\(=31\times\left(5+5^4+5^7\right)⋮31\)
Vậy tổng trên chia hết cho 31
Bài làm :
Ta có :
\(5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+\left(5^7+5^8+5^9\right)\)
\(=5\times\left(1+5+5^2\right)+5^4\times\left(1+5+5^2\right)+5^7\times\left(1+5+5^2\right)\)
\(=5\times31+5^4\times31+5^7\times31\)
\(=31\times\left(5+5^4+5^7\right)⋮31\)
=> Điều phải chứng minh