Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
Mình chứng minh:
\(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)
tương tự như link: Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath
Ta có: \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\) (1 )
( => )
Cho \(a^3+b^3+c^3⋮6\)
(1) => \(a+b+c⋮6\)
( <= )
Cho: \(a+b+c⋮6\)
(1) => \(a^3+b^3+c^3⋮6\)
Vậy \(a^3+b^3+c^3⋮6\)<=> \(a+b+c⋮6\).
ta có a2014 và a2016 có cùng số dư khi chia cho 2 và 3 nên a2014 và a2016 có cùng số dư khi chia cho 6.
ta có b2015 và b2017 có cùng số dư khi chia cho 2 và 3 nên b2015 và b2017 có cùng số dư khi chia cho 6.
ta có c2016 và c2018 có cùng số dư khi chia cho 2 và 3 nên c2016 và c2018 có cùng số dư khi chia cho 6.
do đó a2014 + b2015 + c2016 và a2016 + b2017 + c2018 có cùng số dư khi chia cho 6 hay a2014 + b2015 + c2016 chia hết cho 6 thì a2016 + b2017 + c2018 cũng chia hết cho 6.
a+b+c chia hết cho 6 =>a+b+c chia hết cho 2
=> trong 3 số đó có 2 số lẻ hoặc cả là số chẵn
=>tổng 2 số bất kì trong 3 số chi hết cho 2(1)
Ta có:(a+b+c)3
\(=a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc=a^3+b^3+c^3+3\left(a+c\right)\left(b+c\right)\left(a+b\right)\)
(2)(Bạn tách 6abc ra làm 2 cái 3abc sau đó ghép thành 2 cái bộ 3 và 1 cái bộ 2)
Từ 1 =>3(a+b)(b+c)(c+a) chia hết cho 6(3)
Do a+b+c chia hết cho 6 =>(a+b+c)3 chia hết cho 6(4)
Từ 2 ;3 và 4 =>a3+b3+c3 chia hết cho 6
2 lik.e nhé!
Bài 1:
cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3
Giả sử a và b đồng thời đều không chia hết cho 3
Vì a không chia hết cho 3 nên ⇒ a2 : 3 dư 1
vì b không chia hết cho b nên ⇒ b2 : 3 dư 1
⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)
Vậy a; b không thể đồng thời không chia hết cho ba
Giả sử a ⋮ 3; b không chia hết cho 3
a ⋮ 3 ⇒ a 2 ⋮ 3
Mà a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết)
Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra
Từ những lập luận trên ta có:
a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)
ta có: \(a^3+b^3+c^3-\left(a+b+c\right)=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right).\)
\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\) (*)
mà \(a\left(a-1\right)\left(a+1\right)\) là tích 3 số liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> \(a\left(a-1\right)\left(a+1\right)⋮6\)
tương tự : \(b\left(b-1\right)\left(b+1\right)⋮6\)
\(c\left(c-1\right)\left(c+1\right)⋮6\)
=> (*) chia hếtcho 6
\(\Leftrightarrow a^3+b^3+c^3-\left(a+b+c\right)\) chia hết cho 6
mà theo bài ra ta có: \(a+b+c⋮6\)
nên \(a^3+b^3+c^3⋮6\) => đpcm