\(189^k-1⋮10^5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

+) k = 0 (TM đề bài)

+) k > 0

Xét dãy các bội của 189 gồm 1891; 1892; 1893; ...; \(189^{10^5+1}\)

Ta đã biết 1 số tự nhiên khi chia cho 105 chỉ có thể có 105 loại số dư (0;1;2;...;105-1) mà dãy trên gồm 105 + 1 số nên có ít nhất 2 số cùng dư khi chia cho 105

Giả sử 2 số đó là 189m và 189n trong đó m > n; m;n\(\in\)N*

\(\Rightarrow189^m-189^n⋮10^5\)

\(\Rightarrow189^n\left(189^{m-n}-1\right)⋮10^5\)

Mà (189n;105)=1 do (189;105)=1 nên 189m-n - 1 \(⋮10^5\)

Ta có đpcm

28 tháng 2 2017

Em thường ngày ăn ở tốt mà nhỉ =.=''

@SP......@Sp

2 tháng 12 2018

\(x^4-x^3+2x^2-x+1=0\)

\(\Rightarrow\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)=0\)

\(\Rightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)

\(\Rightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)

Mà \(\hept{\begin{cases}x^2+1>0\forall x\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\end{cases}\Rightarrow\left(x^2+1\right)\left(x^2-x+1\right)>0\forall x}\)

Vậy ko tồn tại x thỏa mãn \(x^4-x^3+2x^2-x+1=0\)

2 tháng 12 2018

\(x^4-x^3+2x^2-x+1=x^4-x^3+x^2+x^2-x+1\)

\(=x^2.\left(x^2-x+1\right)+\left(x^2-x+1\right)\)

\(=\left(x^2+1\right).\left(x^2-x+1\right)\)

vì (x2+1) \(\ge1\)

và \(x^2\ge x\Rightarrow x^2-x+1\ge1\)

=> \(\left(x^2+1\right).\left(x^2-x+1\right)\ge1\Rightarrowđpcm\)

22 tháng 1 2017

H​d lấy hai cái nhân với nhau VP=1 ; VT=bt rút gọn=>đpcm

4 tháng 2 2021

Ta có: \(2a^2+a=3b^2+b\)

\(\Leftrightarrow\left(2a^2-2b^2\right)+\left(a-b\right)=b^2\)

\(\Leftrightarrow\left(2a+2b\right)\left(a-b\right)+\left(a-b\right)=b^2\)

\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)

*CM 2a+2b+1 và a-b nguyên tố cùng nhau

=> 2a+2b+1 cũng là 1 SCP

DD
4 tháng 2 2021

Ta có: 

\(2a^2+a=3b^2+b\)

\(\Leftrightarrow2a^2-2b^2+a-b=b^2\)

\(\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\)

Ta có: 

Đặt \(d=\left(a-b,2a+2b+1\right)\).

\(\Rightarrow\hept{\begin{cases}a-b⋮d\\2a+2b+1⋮d\end{cases}}\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2⋮d^2\Rightarrow b⋮d\)

\(\Rightarrow\left(a-b\right)+b=a⋮d\)

\(\Rightarrow\left(2a+2b+1\right)-2a-2b=1⋮d\Rightarrow d=1\).

Do đó \(a-b,2a+2b+1\)là hai số chính phương. 

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Bạn tham khảo lời giải tại đây:

Cho đa thức f(x) = x^2+ax+b(a,b thuộc Z).Chứng minh rằng tồn tại số nguyên tố k để f(x) = f(2019).f(2020) - Hoc24

22 tháng 9 2016

theo tớ thì có đó 

 bạn thử tìm coi

    Đ/s : có  tồn tại n thỏa mãn điều kiện 

20 tháng 11 2019

Ta có : 

\(4m^2+m=5n^2+n\)

\(\Leftrightarrow5m^2+m=5n^2+n+m^2\)

\(\Leftrightarrow5\left(m^2-n^2\right)+\left(m-n\right)=m^2\)

\(\Leftrightarrow\left(m-n\right)\left(5m+5n+1\right)=m^2\)

\(\Rightarrow\hept{\begin{cases}m-n⋮d\\5m+5n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}m^2=\left(m-n\right)\left(5m+5n+1\right)⋮d^2\\5\left(m-n\right)\left(5m+5n+1\right)⋮d\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}m⋮d\\10m+1⋮d\end{cases}\Rightarrow1⋮d\Rightarrow d=1}\)

Vậy \(m-n,5m+5n+1\) nguyên tố cùng nhau . Mà tích của chúng là một số chính phương nên bản thân \(m-n,5m+5n+1\) cũng là số chính phương ( đpcm)

Chúc bạn học tốt !!!

3 tháng 9 2021

4m2+m=5n2+n

{=}5m2+m=5n2+n+m2

{=}5(m2-n2)+(m-n)=m2

{=}(m-n)(5m+5n+1)=m2

3 tháng 9 2021

là sao