Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- xét dãy số gom 2002 số hạng sau :
2003, 2003.... 2003 , 2003 ... 2003
2002 lan 2003
chia tất cả số hạng của dãy số 2002 có 2002 số dư từ 1 đến 2002[ ko thể có số dư 0 vì các số hạng là số lẻ ]
có 2002 phép chia nên theo nguyên tắc dirichlet phải có ít nhất 2 số có cùng số dư khi chia 2002
giả sử 2 số đó là am và an [m,n N]; 1< = m
voi am = 2003 2003... 2003; an = 2003 2003 ... 2003
ta có :[an- am] chia het cho 2002
hay 2003 2003.... 2003 00 ...00 luon chia het cho 2002
vậy tồn tại có một số dạng 2003 2003 ... 20032003 ..... 200300 ...0 chia het cho 2002
k mk nha
Khi chia một số cho 2002 có tất cả 2002 số dư từ 0 đến 2001;
Xét dãy gồm 2003 số: 2003; 20032003; 200320032003, ...;200320032003...(gồm 2003 số 2003). khi chia các số trong dãy trên cho 2002 thì theo N.L Dirichle có ít nhất hai số chia cho 2002 có cùng số dư, nên hiệu của chúng chia hết cho 2002. Gọi hai số đó là 20032003...2003(gồm m số 2003) và 20032003...2003(gồm n số 2003), giả sử m<n, ta có:
20032003...2003(gồm n số 2003) - 20032003...2003(gồm m số 2003) Chia hết cho 2002
hay 20032003...200300...0(gồm n-m số 2003 và m số 0) chia hết cho 2002. Vậy, tốn tại số có dạng 20032003...200300...0 chia hết cho 2002
Xét 1995 số có dạng : 1994 ; 19941994 ; ... ; .
Nếu một trong các số trên chia hết cho 1995 thì dễ dàng có đpcm.
Nếu các số trên đều không chia hết cho 1995 thì khi chia từng số cho 1995 sẽ chỉ có 1994 khả năng
dư là 1 ; 2 ; 3 ; ... ; 1994.
Vì có 1995 số dư mà chỉ có 1994 khả năng dư, theo nguyên lí Đi-rích-lê tồn tại ít nhất 2 số khi chia
cho 1995 có cùng số dư, hiệu của chúng chia hết cho 1995. Giả sử hai số đó là :
Khi đó : = 1994...199400...0 chia hết cho 1995 (đpcm).
đúng cái nhé
\(gcd\left(1991;10^k\right)=1\) với mọi \(k\).
Giả sử ko có số nào dạng \(2003...2003\) mà chia hết cho \(1991\).
Xét \(1992\) số \(2003,20032003,...,20032003...2003\) (số cuối cùng có \(1992\) lần lặp \(2003\)).
Theo nguyên lí Dirichlet thì tồn tại 2 số cùng số dư khi chia cho \(1991\).
Gọi chúng là \(2003...2003\) có \(m\) và \(n\) lần lặp số \(2003\).
Ta trừ chúng cho nhau, ở đây cho \(m>n\) thì hiệu là con số này:
\(2003...2003000...000\) (trong đó có \(m-n\) số \(2003\)và \(n\) số \(0\))
Số này chia hết cho \(1991\).
Mà \(gcd\left(1991;10^n\right)=1\) nên \(2003...2003\) (với \(m-n\) số \(2003\)) chia hết cho \(1991\) (vô lí)
Vậy điều giả sử là sai, suy ra đpcm.
Em đã được học nguyên lí Dirichlet chưa?
Đề của em bị thiếu nhé.
a) Xét 2017 số: 2015;20152015;...
Khi chia số hạng của dãy cho 2016 thì sẽ có hai phép chia có cùng số dư.Giả sử 2 số đó là: a= 201520152015..2015(m số 2015) b= 201520152015...2015(n số 2015) (với 1=< n<m=< 2017)
=> Hiệu của a và b chia hết cho 2016 hay:
a-b=20152015...2015000chia hết cho 2016 (đpcm)
mình cần gấp lắm nhanh lên nha