Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn tham khảo câu hỏi này nhé:
https://olm.vn/hoi-dap/detail/98207379947.html
k nha
^-^
Xét 1001 số \(3;3^2;3^3;.....;3^{1001}\) thì tồn tại 2 số khi chia cho 1000 có cùng số dư.
Giả sử 2 số \(3^m;3^n\left(1\le n< m\le1001\right)\) khi chia cho 1000 có cùng số dư.
Khi đó \(3^m-3^n⋮1000\)
\(\Rightarrow3^n\left(3^{m-n}-1\right)⋮1000\)
Lại có \(\left(3^n;1000\right)=1\Rightarrow3^{m-n}-1⋮1000\)
\(\Rightarrow3^{m-n}=\overline{....001}\)
\(\Rightarrowđpcm\)
Áp dụng nguyên lý Di-rich-le, ta có:
Gọi các số: 3, 32, ..., 31001. Theo nguyên lý Di-rich-le luôn luôn tồn tại 2 số trong 1001 số trên khi chia cho 1000 có cùng số dư.
Gỉa sử hai số: 3m, 3n trong đó \(1\le n\le m\le1001\)
\(\Rightarrow3^m-3^n⋮1000\)
\(\Rightarrow3^n.\left(3^{m-n}-1\right)⋮1000\)
Vì 3n không chia hết cho 1000 nên => \(3^{m-n}-1⋮1000\)
\(\Rightarrow3^{m-n}-1=100k\left(k\in N\cdot\right)\)
\(\Rightarrow3^{m-n}=1000k+1\)
=> 3m - n có tận cùng là 001
=> ĐPCM
Áp dụng nguyên lý Di-rich-le, ta có:
Gọi các số: 3, 32, ..., 31001. Theo nguyên lý Di-rich-le luôn luôn tồn tại 2 số trong 1001 số trên khi chia cho 1000 có cùng số dư.
Gỉa sử hai số: 3m, 3n
trong đó 1 ≤ n ≤ m ≤ 1001
⇒3m − 3n⋮1000
⇒3n. 3m−n − 1 ⋮1000
Vì 3n không chia hết cho 1000 nên => 3
m−n − 1⋮1000
⇒3m−n − 1 = 100k k ∈ N ·
⇒3m−n = 1000k + 1
=> 3m - n
có tận cùng là 001
=> ĐPCM
p/s : kham khảo
Theo đề bài, lập biểu thức sau:
\(ab+4=x^2\)
\(\Leftrightarrow x^2-4=ab\)
\(\Leftrightarrow x^2-2^2=ab\)
\(\Rightarrow\left(x+2\right)\left(x-2\right)=ab\) (luôn đúng với mọi ab)
=> đpcm
Đặt \(ab+4=m^2\left(m\in N\right)\)
\(\Rightarrow ab=m^2-4=\left(m-2\right)\left(m+2\right)\)
\(\Rightarrow b=\frac{\left(m-2\right)\left(m+2\right)}{a}\)
Ta có : \(m=a+2\Rightarrow m-2=a\)
\(\Rightarrow b=\frac{a\left(a+4\right)}{a}=a+4\)
Vậy với mọi số tự nhiên \(a\) luôn tồn tại \(b=a+4\) để \(ab+4\) là số chính phương .
Giả sử tất cả các số ak với 1 < k < 2014 đều là số lẻ
Quy đồng mẫu số các phân số ở vế trái
+) Nếu a2014 lẻ => Tử số của 2014 phân số đã cho đều là số lẻ => Tổng của 2014 tử số đó là số chẵn
Vì các số a1; ...; a2014 đều lẻ nên tích a1.a2...a2014 lẻ Mà tử số là số chẵn Nên phân số đó không thể bằng 1 => điều giả sử sai
+) Nếu a2014 chẵn => tử số các phân số thứ nhất đến phân số thứ 2013 đều là số chẵn ; tử số của phân số thứ 2014 là số lẻ Nên tổng các tử số là số lẻ
Vì a2014 chẵn nên mẫu số của phân số sau khi quy đồng là số chẵn
=> Tử số không chia hết cho mẫu số => Phân số đó không thể bằng 1 => điều giả sử là sai
Vậy luôn tồn tại 1 số ak từ a1 đến a2013 là số chẵn
Giả sử tất cả các số ak với 1 < k < 2014 đều là số lẻ
Quy đồng mẫu số các phân số ở vế trái
+) Nếu a2014 lẻ => Tử số của 2014 phân số đã cho đều là số lẻ => Tổng của 2014 tử số đó là số chẵn
Vì các số a1; ...; a2014 đều lẻ nên tích a1.a2...a2014 lẻ Mà tử số là số chẵn Nên phân số đó không thể bằng 1 => điều giả sử sai
+) Nếu a2014 chẵn => tử số các phân số thứ nhất đến phân số thứ 2013 đều là số chẵn ; tử số của phân số thứ 2014 là số lẻ Nên tổng các tử số là số lẻ
Vì a2014 chẵn nên mẫu số của phân số sau khi quy đồng là số chẵn
=> Tử số không chia hết cho mẫu số => Phân số đó không thể bằng 1 => điều giả sử là sai
Vậy luôn tồn tại 1 số ak từ a1 đến a2013 là số chẵn
\(2^{2^n}\forall n\in N,n\ge2\) thì \(2^{2^n}\) là số chẵn nên không thể tận cùng là 7, bạn xem lại đề
#)Góp ý :
Bạn tham khảo nhé :
Câu hỏi của tth - Toán lớp 7 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/218057796597.html
#)Góp ý :
Bạn tham khảo nhé :
Câu hỏi của tth - Toán lớp 7 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/218057796597.html