\(y=\dfrac{a^2}{x}\) lập thành với các trục tọa độ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Phương trình tiếp tuyến tại M ( x 0 ;   y 0 ) là

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Suy ra diện tích tam giác OAB là

Giải sách bài tập Toán 11 | Giải sbt Toán 11

21 tháng 4 2016

Giả sử 3 cạnh của tam giác ABC theo thứ tự a, b, c. Không giảm tính tổng quát, ta giả sử 0 < a \(\le b\le c\), nếu chúng tạo thành cấp số nhân thì, theo tính chất của cấp số nhân ta có : \(b^2=ac\)

Theo định lí hàm số côsin, ta có :

\(b^2=a^2+c^2-2ac\cos B\Rightarrow ac=a^2+c^2-2ac.\cos B\)

                                     \(\Leftrightarrow\cos B=\frac{a^2+c^2}{2ac}-\frac{1}{2}\)

Mặt khác \(a^2+c^2\ge2ac\Rightarrow\cos B\ge1-\frac{1}{2}=\frac{1}{2}\)

Vậy góc \(B\le60^0\)

Nhưng \(a\le b\Rightarrow A\le60^0\) cho nên tam giác ABC có 2 góc không quá \(60^0\)

5 tháng 12 2019

- Ta có : 

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2) 

Lấy điểm  M ( x 0 ;   y 0 )   ∈   C .

+ Phương trình tiếp tuyến tại điểm M là:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

+ Giao với trục hoành:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

+ Giao với trục tung:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

- Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

- Theo giả thiết tam giác OAB có diện tích bằng 2 nên:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

Chọn D

11 tháng 4 2017

Ta có: Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Lấy điểm M(x0;y0) ∈ (C).

- Phương trình tiếp tuyến tại điểm M là:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

+ Giao với trục hoành: Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

+ Giao với trục tung: Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Ta có:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Theo giả thiết tam giác OAB có diện tích bằng 2 nên:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

6 tháng 7 2017

- Hàm số đã cho xác định với ∀x ≠ 1.

- Ta có: 

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 4)

- Gọi M ( x 0 ;   y 0 )  là tọa độ tiếp điểm, suy ra phương trình tiếp tuyến của (C):

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 4)

- Tiếp tuyến tạo với 2 trục tọa độ lập thành một tam giác cân nên hệ số góc của tiếp tuyến bằng ± 1. Mặt khác: y ' ( x 0 )   <   0 , nên có: y ' ( x 0 )   =   - 1 .

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 4)

- Vậy, có 2 tiếp tuyến thỏa mãn đề bài: y = -x - 1; y = -x + 7.

Chọn D

4 tháng 4 2021

\(y'=\dfrac{-4}{\left(x-1\right)^2}\)

a) \(y'=-1\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

pt tiếp tuyến : \(\left[{}\begin{matrix}y=-\left(x-3\right)+4=-x+7\\y=-\left(x+1\right)=-x-1\end{matrix}\right.\)

b) \(k=\pm1\)

\(y'< 0\forall x\Rightarrow y'=-1\)

làm như trên

c) hoành độ tiếp điểm \(x=\pm2\)

TH x = 2 

\(k=-4\)

pt tiếp tuyến : \(y=-4\left(x-2\right)+6=-4x+14\)

TH x = -2

\(k=-\dfrac{4}{9}\)

pt tiếp tuyến : \(y=-\dfrac{4}{9}\left(x+2\right)+\dfrac{2}{3}=-\dfrac{4}{9}x-\dfrac{2}{9}\)

4 tháng 4 2017

a) Ta có:

y′=f′(x)=−2(x−1)2⇒f′(2)=−2(2−1)2=−2y′=f′(x)=−2(x−1)2⇒f′(2)=−2(2−1)2=−2

Suy ra phương trình tiếp tuyến cần tìm là:

y – 3 = -2(x – 2) ⇔ y = -2x + 7

b) Ta có: y’ = f’(x) = 3x2 + 8x ⇒ f’(-1) = 3 – 8 = -5

Mặt khác: x0 = -1 ⇒ y0 = -1 + 4 – 1 = 2

Vậy phương trình tiếp tuyến cần tìm là:

y – 2 = -5 (x + 1) ⇔ y = -5x – 3

c) Ta có:

y0 = 1 ⇒ 1 = x2 – 4x + 4 ⇒ x02 – 4x0 + 3 = 0 ⇒ x0 = 1 hoặc x0 = 3

f’(x) = 2x – 4 ⇒ f’(1) = -2 và f’(3) = 2

Vậy có hai tiếp tuyến cần tìm có phương trình là:

y – 1 = -2 (x – 1) ⇔ y = -2x + 3

y – 1 = 2 (x – 3) ⇔ y = 2x – 5