Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tiếp tuyến tại M ( x 0 ; y 0 ) là
Suy ra diện tích tam giác OAB là
Giả sử 3 cạnh của tam giác ABC theo thứ tự a, b, c. Không giảm tính tổng quát, ta giả sử 0 < a \(\le b\le c\), nếu chúng tạo thành cấp số nhân thì, theo tính chất của cấp số nhân ta có : \(b^2=ac\)
Theo định lí hàm số côsin, ta có :
\(b^2=a^2+c^2-2ac\cos B\Rightarrow ac=a^2+c^2-2ac.\cos B\)
\(\Leftrightarrow\cos B=\frac{a^2+c^2}{2ac}-\frac{1}{2}\)
Mặt khác \(a^2+c^2\ge2ac\Rightarrow\cos B\ge1-\frac{1}{2}=\frac{1}{2}\)
Vậy góc \(B\le60^0\)
Nhưng \(a\le b\Rightarrow A\le60^0\) cho nên tam giác ABC có 2 góc không quá \(60^0\)
- Ta có :
Lấy điểm M ( x 0 ; y 0 ) ∈ C .
+ Phương trình tiếp tuyến tại điểm M là:
+ Giao với trục hoành:
+ Giao với trục tung:
- Ta có:
- Theo giả thiết tam giác OAB có diện tích bằng 2 nên:
Chọn D
Ta có:
- Lấy điểm M(x0;y0) ∈ (C).
- Phương trình tiếp tuyến tại điểm M là:
+ Giao với trục hoành:
+ Giao với trục tung:
- Ta có:
- Theo giả thiết tam giác OAB có diện tích bằng 2 nên:
- Hàm số đã cho xác định với ∀x ≠ 1.
- Ta có:
- Gọi M ( x 0 ; y 0 ) là tọa độ tiếp điểm, suy ra phương trình tiếp tuyến của (C):
- Tiếp tuyến tạo với 2 trục tọa độ lập thành một tam giác cân nên hệ số góc của tiếp tuyến bằng ± 1. Mặt khác: y ' ( x 0 ) < 0 , nên có: y ' ( x 0 ) = - 1 .
- Vậy, có 2 tiếp tuyến thỏa mãn đề bài: y = -x - 1; y = -x + 7.
Chọn D
\(y'=\dfrac{-4}{\left(x-1\right)^2}\)
a) \(y'=-1\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
pt tiếp tuyến : \(\left[{}\begin{matrix}y=-\left(x-3\right)+4=-x+7\\y=-\left(x+1\right)=-x-1\end{matrix}\right.\)
b) \(k=\pm1\)
\(y'< 0\forall x\Rightarrow y'=-1\)
làm như trên
c) hoành độ tiếp điểm \(x=\pm2\)
TH x = 2
\(k=-4\)
pt tiếp tuyến : \(y=-4\left(x-2\right)+6=-4x+14\)
TH x = -2
\(k=-\dfrac{4}{9}\)
pt tiếp tuyến : \(y=-\dfrac{4}{9}\left(x+2\right)+\dfrac{2}{3}=-\dfrac{4}{9}x-\dfrac{2}{9}\)
a) Ta có:
y′=f′(x)=−2(x−1)2⇒f′(2)=−2(2−1)2=−2y′=f′(x)=−2(x−1)2⇒f′(2)=−2(2−1)2=−2
Suy ra phương trình tiếp tuyến cần tìm là:
y – 3 = -2(x – 2) ⇔ y = -2x + 7
b) Ta có: y’ = f’(x) = 3x2 + 8x ⇒ f’(-1) = 3 – 8 = -5
Mặt khác: x0 = -1 ⇒ y0 = -1 + 4 – 1 = 2
Vậy phương trình tiếp tuyến cần tìm là:
y – 2 = -5 (x + 1) ⇔ y = -5x – 3
c) Ta có:
y0 = 1 ⇒ 1 = x2 – 4x + 4 ⇒ x02 – 4x0 + 3 = 0 ⇒ x0 = 1 hoặc x0 = 3
f’(x) = 2x – 4 ⇒ f’(1) = -2 và f’(3) = 2
Vậy có hai tiếp tuyến cần tìm có phương trình là:
y – 1 = -2 (x – 1) ⇔ y = -2x + 3
y – 1 = 2 (x – 3) ⇔ y = 2x – 5
Tham khảo:
Phương trình tiếp tuyến tại M(x0; y0)M(x0; y0) là
Suy ra diện tích tam giác OAB là