Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d1xd2 : x +2 = -x -2 => 2x = -4 => x =-2 ; y =0 A( -2;0)
d2xd3 : -x -2 = -2x +2 => x = 4 => y= 6 B (4;6)
d1xd3 : x +2 = -2x +2 => 3x =0 => x =0 => y =2 C (0;2)
tính AB ; AC; BC sau đó dùng công thức Herong nhé .
b: Để hai đường song song thì m^2-1=1 và -m^2+3=5
=>m^2=2 và -m^2=2
=>\(m=\pm\sqrt{2}\)
c: Vì (d2) vuông góc với (d3)
và (d1)//(d2)
nên (d1) vuông góc với (d3)
a: d//d1
=>m-2=-m và m+7<>2m-3
=>m=1
b: d trùng với d2
=>m-2=-m^2 và m+7=-2m+1
=>m=-2 và m^2+m-2=0
=>m=-2
d: d vuông góc d4
=>-1/6(m+3)(m-2)=-1
=>(m+3)(m-2)=6
=>m^2+m-6-6=0
=>m^2+m-12=0
=>m=-4 hoặc m=3
c: Thay y=1/3 vào d3, ta được:
-2/3x+5/3=1/3
=>-2/3x=-4/3
=>x=2
Thay x=2 và y=1/3 vào (d), ta được:
2(m-2)+m+7=1/3
=>3m+3=1/3
=>3m=-8/3
=>m=-8/9
b: Vì (d3)//(d2) nên a=-2
=>(d3): y=-2x+b
Thay x=3 vào (d1), ta được:
\(y=\dfrac{2}{3}\cdot3+2=4\)
Thay x=3 và y=4 vào (d3),ta được:
b-6=4
=>b=10
c: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{2}{3}x+2=-2x+1\\y=-2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{8}\\y=2\cdot\dfrac{3}{8}+1=\dfrac{7}{4}\end{matrix}\right.\)
Gọi A là giao điểm d1 và d2
Pt hoành độ giao điểm d1 và d2: \(x+3=-x+1\Rightarrow x=-1\)
\(\Rightarrow A\left(-1;2\right)\)
Để 3 đường thẳng đồng quy \(\Leftrightarrow\) d3 qua A
\(\Leftrightarrow2=\sqrt{2}.\left(-1\right)+\sqrt{2}+m\)
\(\Rightarrow m=2\)
Bây giờ ta sẽ đi tìm tọa độ giao điểm của 3 đường thẳng trên
Với (d1) và (d2) cắt nhau tại điểm \(A\left(x_1;y_1\right)\) nên khi đó:
\(\hept{\begin{cases}y_1=3x_1-2\\y_1=-\frac{1}{3}x_1+\frac{4}{3}\end{cases}}\Rightarrow3x_1-2=-\frac{1}{3}x_1+\frac{4}{3}\Leftrightarrow\frac{10}{3}x_1=\frac{10}{3}\Rightarrow\hept{\begin{cases}x_1=1\\y_1=1\end{cases}}\)
Vậy \(A\left(1;1\right)\)
Tương tự gọi B,C là giao điểm của đường (d3) với (d2) , (d1)
Khi đó ta dễ dàng tính được: \(B\left(4;0\right)\) ; \(C\left(2;4\right)\)
Áp dụng công thức tính khoảng cách giữa 2 điểm trong mặt phẳng ta có:
\(AB=\sqrt{\left(1-4\right)^2+\left(1-0\right)^2}=\sqrt{10}\Rightarrow AB^2=10\)
\(AC=\sqrt{\left(1-2\right)^2+\left(1-4\right)^2}=\sqrt{10}\Rightarrow AC^2=10\)
\(BC=\sqrt{\left(4-2\right)^2+\left(0-4\right)^2}=\sqrt{20}\Rightarrow BC^2=20\)
Xét tam giác ABC có: \(\hept{\begin{cases}AB=AC\\AB^2+AC^2=BC^2\left(=20\right)\end{cases}}\)
=> Tam giác ABC vuông cân tại A
=> đpcm
giao điểm của d1 với d2 là : y=3x-2
y=-1/3x+4/3
<=> 3x -2 =-1/3+4/3
y=3x-2
<=> x=1
y=1
vaaky giao điểm của d1 và d2 có tọa độ A(1,1)
tương tự ta được giao điểm của: d2 với d3 có tọa độ B (4,0)
d3 với d1 có tọa độ C(2,4)
độ dài AB là\(\sqrt{\left(Xa-Xb\right)^2+\left(Ya+Yb\right)^2}\)=\(\sqrt{\left(1-4\right)^2+\left(1-0\right)^2}\)=\(\sqrt{10}\)
tương tư ta được AC= \(\sqrt{10}\)
=> AB=AC ; d1 vuông góc d2 vì 3.(-1/3)=-1
=> tam giác ABC VUÔNG CÂN