K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

cái đó là định lí rồi chứ nhỉ ?

19 tháng 3 2020

hình như t/c đường trung tuyến lớp 7 kì 2 mới học mà

11 tháng 5 2017

Gọi Δ ABC có trung tuyến BM = CN, G là trọng tâm Δ (giao điểm các trung tuyến)
Ta có :
GB = 2/3.BM
GC = 2/3.CN
Mà BM = CN => GB = GC
=> Δ BGC cân tại G
=> ∠ MBC = ∠ NCB
Xét Δ BMC và Δ CNB :
BM = CN
∠ MBC = ∠ NCB
BC là cạnh chung
=> Δ BMC = Δ CNB (c - g - c)
=> ∠ MCB = ∠ NBC
hay ∠ ACB = ∠ ABC
=> Δ ABC cân tại A (đpcm)

11 tháng 10 2018

A F E B H C

Xét hai tam giác vuông EBC và FCB có:

BC (cạnh huyền chung)

BE = CF

Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)

=> Góc FBC = góc ECB

hay  ∆ABC cân tại A

19 tháng 4 2017

Hướng dẫn:

Xét hai tam giác vuông EBC và FCB có:

BC (cạnh huyền chung)

BE = CF (giả thiết)

Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)

=> \(\widehat{FBC}=\widehat{ECB}\)

hay ∆ABC cân tại A

+ Nếu tam giác có ba đường cao bằng nhau, tương tự như chứng minh trên, ta chứng minh được ba góc của chúng bằng nhau, suy ra đó là tam giác đều.

 

19 tháng 4 2017

Bạn Thien Tu Borum làm nhanh vô rồi sai hình thức rồi kìa

Gọi tam giác đề bài cho là ΔABC có BD,CE là các trung tuyến, BD=CE. Cần chứng minh ΔABC cân tại A

Gọi G là giao điểm của BD và CE

Xét ΔABC có

BD,CE là trung tuyến

BD cắt CE tại G

=>G là trọng tâm

=>GB=2/3BD và GC=2/3CE

mà BD=CE

nên GB=GC

=>góc GBC=góc GCB

Xét ΔDBC và ΔECB có

BC chung

góc DBC=góc ECB

DB=EC

=>ΔDBC=ΔECB

=>góc DCB=góc EBC

=>ΔABC cân tại A

31 tháng 12 2022

Xét ΔABM có AHvừa là đường cao, vừa là phân giác

nên ΔABM cân tại A

=>H là trung điểm của BM

Xét ΔAHC có AM là phân giác

nên AH/AC=CM/MH=CM/2MB=CM/2MC=1/2

Xet ΔAHC vuông tại H có sin ACH=AH/AC=1/2

nên góc ACH=30 độ

=>góc HAC=60 độ

=>góc BAH=1/2*góc HAC=30 độ

=>góc BAC=90 độ

=>ΔABC vuông tại A

Xét ΔABC vuông tại A có góc B+góc C=90 độ

=>góc B=60 độ

mà ΔAMB cân tại A

nên ΔAMB đều

31 tháng 10 2023

Xét ΔABM có AHvừa là đường cao, vừa là phân giác

nên ΔABM cân tại A

=>H là trung điểm của BM

Xét ΔAHC có AM là phân giác

nên AH/AC=CM/MH=CM/2MB=CM/2MC=1/2

Xet ΔAHC vuông tại H có sin ACH=AH/AC=1/2

nên góc ACH=30 độ

=>góc HAC=60 độ

=>góc BAH=1/2*góc HAC=30 độ

=>góc BAC=90 độ

=>ΔABC vuông tại A

Xét ΔABC vuông tại A có góc B+góc C=90 độ

=>góc B=60 độ

mà ΔAMB cân tại A

nên

     
12 tháng 5 2018

Vẽ BH⊥ACvà CK⊥AB

Xét hai tam giác vuông KBC và HCB có:

    Cạnh BC chung

    BH=CK(gt)

⇒ΔKBC=ΔHCB

⇒KBCˆ=HCBˆ

Xét tam giác ABC, có: 

KBCˆ=HCBˆ hay ABCˆ=ACBˆ 

Vậy tam giác ABC cân tại A (đpcm)

 Ba đường cao bằng nhau

Từ a) ta có:

    Nếu BH = CK thì ΔABC cân tại A => AB = AC (1)

    Nếu AI = BH thì ΔABC cân tại C => CA = CB (2)

Từ (1) và (2) ta có: AB = BC = AC

Vậy ΔABC là tam giác đều.

Xét hai tam giác vuông EBC và FCB có:
BC (cạnh huyền chung)
BE = CF
Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)

\(\Rightarrow\widehat{FBC}=\widehat{ECB}\)
hay  ∆ABC cân tại A
+ Nếu tam giác có ba đường cao bằng nhau, tương tự như chứng minh trên, ta chứng
minh được đó là tam giác đều.