Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. Ta có: C+E=\(\sqrt{45+\sqrt{2009}}+\sqrt{45-\sqrt{2009}}=\sqrt{\left(\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{41}{2}}\right)^2}+\sqrt{\left(\sqrt{\dfrac{49}{2}}-\sqrt{\dfrac{41}{2}}\right)^2}=\dfrac{7}{\sqrt{2}}+\dfrac{\sqrt{41}}{\sqrt{2}}+\dfrac{7}{\sqrt{2}}-\dfrac{\sqrt{41}}{\sqrt{2}}=\dfrac{2.7}{\sqrt{2}}=7\sqrt{2}\)
=> đpcm.
Nhân tử và mẫu của biểu thức với \(\sqrt{m}+\sqrt{n}-\sqrt{m+n}.\)
\(\Rightarrow\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{\left(\sqrt{m}+\sqrt{n}+\sqrt{m+n}\right)\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}\)
\(=\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{\left(\sqrt{m}+\sqrt{n}\right)^2-\left(\sqrt{m+n}\right)^2}\)
\(=\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{m+n+2\sqrt{mn}-m-n}=\sqrt{m}+\sqrt{n}-\sqrt{m+n}\)
Ta có: \(\frac{2\sqrt{mn}}{\sqrt{m}+\sqrt{n}+\sqrt{m+n}}=\frac{2\sqrt{mn}.\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{(\sqrt{m}+\sqrt{n}+\sqrt{m+n})\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}\)
\(=\frac{2\sqrt{mn}.\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{\left(\sqrt{m}+\sqrt{n}\right)^2-\left(\sqrt{m+n}\right)^2}=\frac{2\sqrt{mn}.\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{m+2\sqrt{mn}+n-m-n}\)
\(=\frac{2\sqrt{mn}\left(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\right)}{2\sqrt{mn}}=\sqrt{m}+\sqrt{n}-\sqrt{m+n}\)( đpcm )
Áp dụng: Với \(m=2\)và \(n=5\)và \(mn=10\); \(m+n=7\)ta có:
\(\frac{2\sqrt{10}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}=\sqrt{2}+\sqrt{5}-\sqrt{2+5}=\sqrt{2}+\sqrt{5}-\sqrt{7}\)
Câu hỏi của Nguyen Phuc Duy - Toán lớp 9 - Học toán với OnlineMath
Bạn tham khảo link này!
Với mọi n nguyên dương ta có:
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=1\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)
Với k nguyên dương thì
\(\frac{1}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k+1}+\sqrt{k}}\Rightarrow\frac{2}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k-1}+\sqrt{k}}+\frac{1}{\sqrt{k+1}+\sqrt{k}}=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}\)
\(=\sqrt{k+1}-\sqrt{k-1}\)(*)
Đặt A = vế trái. Áp dụng (*) ta có:
\(\frac{2}{\sqrt{1}+\sqrt{2}}>\sqrt{3}-\sqrt{1}\)
\(\frac{2}{\sqrt{3}+\sqrt{4}}>\sqrt{5}-\sqrt{3}\)
...
\(\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-\sqrt{79}\)
Cộng tất cả lại
\(2A=\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+....+\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-1=8\Rightarrow A>4\left(đpcm\right)\)
3.
Theo bất đẳng thức cô si ta có:
\(\sqrt{b-1}=\sqrt{1.\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a.\sqrt{b-1}\le\frac{a.b}{2}\)
Tương tự \(\Rightarrow b.\sqrt{a-1}\le\frac{a.b}{2}\Rightarrow a.\sqrt{b-1}+b.\sqrt{a-1}\le a.b\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=2\)
3.
Ta có: \(VT=\)\(8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}\)
\(=8+8+\left(2\sqrt{10+2\sqrt{5}}-2\sqrt{10+2\sqrt{5}}\right)\)
\(=16\ne VP\)
⇒ Đề sai
1. Ta có: \(\sqrt{4x}\)- 3\(\sqrt{x}\)+2\(\sqrt{15x}\)=18
⇌2\(\sqrt{x}\)-3\(\sqrt{x}\) +2\(\sqrt{15x}\)=18
⇌\(-\sqrt{x}\) +2\(\sqrt{15x}\)-15 = 3
⇌-(\(\sqrt{x}\) -2\(\sqrt{15x}\)+15 )=3
⇌(\(\sqrt{x}\)-\(\sqrt{15}\))=-3 (vô lí)
Vậy không tìm được giá trị x thỏa mãn bài toán
2.Ta có: B=\(\dfrac{1}{\sqrt{11-2\sqrt{30}}}-\dfrac{3}{7-2\sqrt{10}}\)
= \(\dfrac{1}{\sqrt{6-2\sqrt{6.5}+5}}-\dfrac{3}{2-2\sqrt{2.5}+5}\)
=\(\dfrac{1}{\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}}-\dfrac{3}{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
=\(\dfrac{1}{\sqrt{6}-\sqrt{5}}-\dfrac{3}{\sqrt{3}-\sqrt{2}}\)
hình như đề sai
\(A=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\)
\(\Leftrightarrow A^3=7+5\sqrt{2}+7-5\sqrt{2}+3\cdot A\cdot\left(-1\right)\)
\(\Leftrightarrow A^3+3A-14=0\)
=>A=2
a: \(=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=\left(-3\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=\left(-3\sqrt{10}+10\right)\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=-9-30\sqrt{10}+3\sqrt{10}+100=91-27\sqrt{10}\)
b: \(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}\cdot\left(\dfrac{5}{2}\sqrt{2}+12\right)\)
\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\left(5\sqrt{3}+12\sqrt{6}\right)\)
\(=-60-144\sqrt{2}+30\sqrt{2}+144\)
\(=84-114\sqrt{2}\)
\(\sqrt{7-2\sqrt{10}}+\sqrt{2}=\sqrt{5-2\sqrt{2}.\sqrt{5}+2}+\sqrt{2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{2}=\sqrt{5}-\sqrt{2}+\sqrt{2}=\sqrt{5}\)