Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tương tự ví dụ 11, trang 22, Sách Nâng cao và phát triển Toán 7,
Giả sử \(\sqrt{2018}\) là số hữu tỉ
\(\Rightarrow\) \(\sqrt{2018}\) có thể viết được dưới dạng \(\sqrt{2018}=\frac{m}{n}\left(m;n\in Z;\left(m;n\right)=1;n\ne1\right)\)
\(\Leftrightarrow2018=\frac{m^2}{n^2}\Rightarrow m^2⋮n^2\Rightarrow m⋮n\) Mà \(\left(m;n\right)=1\Rightarrow n=1\) Trái với giả thiết
\(\Rightarrow\) Điều giả sử sai \(\Rightarrow\sqrt{2018}\) là số vô tỉ
Giả sử \(\sqrt{2018}\)không phải là số vô tỷ, khi đó :
\(\sqrt{2018}\)là số hữu tỷ.
\(\Rightarrow\sqrt{2018}=\frac{m}{n}\left(m,n\inℕ^∗\right);\left(m.n\right)=1\)
\(\Rightarrow2018=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\)
\(\Rightarrow2018.n^2=m^2\)
\(\Rightarrow m^2⋮2018\)
\(\Rightarrow m^2⋮2\left(2018⋮2\right)\)
\(\Rightarrow m⋮2\)( Vì 2 là số nguyên tố )
\(\Rightarrow m=2k\left(k\inℕ\right)\)
Do đó : \(2018.n^2=\left(2k\right)^2\)
\(\Rightarrow2018.n^2=4k^2\)
\(\Rightarrow1009.n^2=2k^2\)
\(\Rightarrow1009.n^2⋮2\)
\(\Rightarrow n^2⋮2\)( vì \(\left(1009,2\right)=1\))
\(\Rightarrow n⋮2\)( Vì 2 là số nguyên tố )
Như vậy : \(m⋮2;n⋮2\)trái với \(\left(m,n\right)=1\)
Chứng tỏ điều giả sử ko xảy ra.
Vậy \(\sqrt{2018}\)là số vô tỷ
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
a) Bằng phản chứng giả sử \(\sqrt{2}\)là số hữu tỉ
---> Đặt \(\sqrt{2}=\frac{a}{b}\)với ƯCLN(a,b)=1 (tức là a/b tối giản), a,b>0
\(\Rightarrow b\sqrt{2}=a\Rightarrow2b^2=a^2\Rightarrow a^2\)là số chẵn \(\Rightarrow a\)là số chẵn
Đặt \(a=2k\Rightarrow b\sqrt{2}=2k\Rightarrow2b^2=4k^2\Rightarrow b^2=2k^2,k\inℕ\)
\(\Rightarrow b^2\)là số chẵn\(\Rightarrow b\)là số chẵn
Vậy \(2\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết--->đpcm
b) Bằng phản chứng giả sử \(3\sqrt{3}-1\)là số hữu tỉ
---> Đặt \(3\sqrt{3}-1=\frac{a}{b}\)với ƯCLN(a,b)=1 và a,b>0
\(\Rightarrow3b\sqrt{3}=a+b\Rightarrow27b^2=\left(a+b\right)^2\Rightarrow\left(a+b\right)^2⋮9\Rightarrow a+b⋮3\)
Đặt \(a+b=3k,k\inℕ\Rightarrow a=3k-b\Rightarrow\frac{3k-b}{b}=3\sqrt{3}-1\Rightarrow\frac{3k}{b}=3\sqrt{3}\)
\(\Rightarrow k^2=3b^2\Rightarrow k^2⋮3\Rightarrow k⋮3\)---> Đặt \(k=3l,l\inℕ\Rightarrow a=9l-b\Rightarrow\frac{9l-b}{b}=3\sqrt{3}-1\Rightarrow\frac{9l}{b}=3\sqrt{3}\)
\(\Rightarrow b^2=3l^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)
\(\Rightarrow3\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết---> đpcm
(Bài dài quá, giải mệt vler !!)
Bài giải
a, Ta có :
\(\sqrt{2}\) là số vô tỉ \(\Rightarrow\) \(7-\sqrt{2}\) là số vô tỉ
b, Ta có :
\(\sqrt{5}\)là số vô tỉ \(\Rightarrow\sqrt{5}+24\) là số vô tỉ
Ta có: \(\sqrt{5}\) là 1 số vô tỉ
=> \(2+\sqrt{5}\) là 1 số vô tỉ
=> \(\sqrt{2+\sqrt{5}}\) là số vô tỉ
=> đpcm
Giả sử \(\sqrt{2+\sqrt{5}}=q\left(q\inℚ\right)\)
\(\Rightarrow2+\sqrt{5}=q^2\inℚ\)
\(\Leftrightarrow\sqrt{5}=q-2\inℚ\)(Vô lý vì \(\sqrt{5}\in I\))
Vậy điều giả sử là sai hay \(\sqrt{2+\sqrt{5}}\)là số vô tỉ
Giả sử căn bậc 2 của 2 là 1 số hữu tỉ ( nếu kết quả ra số hữu tỉ thì điều giả sử là đúng còn nếu ko thì điều giả sử là sai)
Vậy căn 2 = a/b
với a,b thuộc Z, b khác 0 và a/b là 1 phân số tối giản.
bình phương hai vế ta được: 2=a^2/b^2
suy ra: a^2=2b^2
Vậy a^2 là số chẵn, suy ra a là số chẵn.
nên a=2m, m thuộc Z(m là 1 tham số), ta được:
(2m)^2=a^2=2b^2
suy ra: b^2=(2m)^2/2=2m^2
Vậy b^2 là số chẵn suy ra b là số chẵn.
nên b=2n, n thuộc Z(n là tham số)
Như vậy: a/b = 2m/2n ko phải là phân số tối giản, trái với giả sử ban đầu.
Vậy căn bậc 2 của 2 là 1 số vô tỉ.
Một số vô tỉ cộng một số nguyên thì ra số vô tỉ
\(\sqrt[]{2}\)+a là số vô tỉ