Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)
Bạn ơi đề thừa số 1 thì phải nha
A = (3+3^2)+(3^3+3^4)+....+(3^2011+3^2012)
= 3.(1+3)+3^3.(1+3)+....+3^2011.(1+3)
= 4+3^3.4+.....+3^2011.4
= 4.(3+3^3+....+3^2011) chia hết cho 4
k mk nha
4a=4+42+43+......+42013
4a-a=(4+42+43+......+42013)-(1+4+42+......+42012)
3a=42013-1
a=42013-1
3
a) \(\Rightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+.....+\left(3^{88}+3^{99}\right)\)
\(\Rightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+......+3^{88}\left(1+3\right)\)
\(\Rightarrow A=1.4+3^2.4+..........+3^{88}.4\)
\(\Rightarrow A=4.\left(1+3^2+.........+3^{88}\right)\)
Vậy A chia hết cho 4 ĐPCM
b) \(\Rightarrow A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)\)\(+......+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(\Rightarrow A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+\)\(....+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=1.40+3^4.40+.......+3^{96}.40\)
\(\Rightarrow A=40.\left(1+3^4+....+3^{96}\right)\)
Vậy A chia hết cho 40 ĐPCM
\(A=3^1+3^2+...+3^{2012}\)
\(A=3\left(1+3\right)+...+3^{2011}\left(1+3\right)\)
\(A=3.4+...+3^{2011}.4\)
\(A=4\left(3+...+3^{2011}\right)\)
\(\Rightarrow A⋮4\)
hok tốt!!
\(A=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2011}+3^{2012}\right)\)
\(A=\left(3^1.1+3^1.3\right)+\left(3^3.1+3^3.3\right)+...+\left(3^{2011}.1+3^{2011}.3\right)\)
\(A=3^1.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{2011}.\left(1+3\right)\)
\(A=\left(1+3\right).\left(3^1+3^3+...+3^{2011}\right)\)
\(A=4.\left(3^1+3^3+...+3^{2011}\right)\)
Vậy \(A⋮11\)
\(B=3+3^2+3^3+....+3^{120}\)
a, Ta thấy : Cách số hạng của B đều chi hết cho 3
\(B=3+3^2+3^3+....+3^{120}⋮3\)
\(b,B=3+3^2+3^3+....+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{119}+3^{120}\right)\)
\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(B=3.4+3^3.4+...+3^{119}.4\)
\(B=4\left(3+3^3+...+3^{199}\right)\)
Có : \(B=4\left(3+3^3+...+3^{199}\right)⋮4\)
\(\Rightarrow B⋮4\)
\(c,B=3+3^2+3^3+....+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{118}\left(3+3^2\right)\)
\(B=13+3^2.13+...+3^{118}.13\)
\(B=13\left(3^2+3^4+...+3^{118}\right)\)
Có : \(B=13\left(3^2+3^4+...+3^{118}\right)⋮13\)
\(\Rightarrow B⋮13\)
a) S= 2 + 22 + 23 +...+ 2100
S= ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )
S= 6+ 22 ( 2+22)+ ...+ 298 (2+22)
S=6+ 22.6+ ...+ 298.6
S= 6.(22+...+298) chia hết cho 3 ( vì 6 chia hết cho 3)
Ta có :
S = 3 + 32 + 33 + ... + 32012 ( có 2012 số hạng )
=> S = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 32011 + 32012 ) ( có đủ 1006 nhóm )
=> S = ( 3 + 32 ) + 32 . ( 3 + 32 ) + ... + 32010 . ( 3 + 32 )
=> S = 12 + 32 . 12 + ... + 32010 . 12
=> S = 4 . 3 . ( 1 + 32 + ... + 32010 ) ⋮ 4
Vậy S ⋮ 4