\(\overline{abcabc}\) luôn chia hết cho 11

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

Ta có: \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.91.11⋮11\)

\(\Rightarrow\overline{abcabc}⋮11\left(đpcm\right)\)

Vậy...

21 tháng 3 2017

bạn giải những bài trước của mình được k, please

18 tháng 3 2018

\(\overline{abcabc}=\overline{abc}\cdot1000+\overline{abc}\)

\(=\overline{abc}\cdot1001\)

\(1001⋮11\)

\(\Rightarrow\overline{abc}\cdot1001⋮11\)  (đpcm)

18 tháng 3 2018

abcabc = abc . 1000 + abc = abc . (1000 + 1)

=> abc . 1001 = abc . 99 . 11

Vì 11 chia hết cho 11 nên abc . 99 . 11 chia hết cho 11

=> abcabc lúc nào cx chia hết cho 11 (đpcm)

1 tháng 8 2017

Ta có:

\(\overline{abcabc}=1001\overline{abc}\)

\(=143.7.\overline{abc}\)

\(\Rightarrow1001\overline{abc}⋮7\Rightarrow\overline{abcabc}⋮7\)

\(\rightarrowđpcm\)

\(\overline{aaa}=111a\)

\(=37.3.a\)

\(\Rightarrow111a⋮37\Rightarrow\overline{aaa}⋮37\)

\(\rightarrowđpcm\)

\(\overline{1ab1}-\overline{1ba1}\)

\(=1000+\overline{ab}+1-1000-\overline{ba}-1\)

\(=\overline{ab}-\overline{ba}\)

\(=10a+b-10b-a\)

\(=9a-9b\)

\(=9\left(a-b\right)⋮9\)

\(\overline{1ab1}-\overline{1ba1}=\overline{...0}⋮10\)

\(\Rightarrow\overline{1ab1}-\overline{1ba1}⋮9;10\Rightarrow⋮90\)

\(\rightarrowđpcm\)

1 tháng 8 2017

bn ơi câu b mk ghi nhầm đề là 4 chữ a mới đúng bn giải lại giùm mk nhoa

8 tháng 1 2022

Ta xét 1975 số có dạng:

Số thứ nhất: 1974

Số thứ 2: 19741974

..............

Số thứ 1975: 19741974...1974 (có 1975 nhóm số 1974)

Khi chia các số trên cho 1975 số dư lớn nhất là 1974 => có ít nhất 2 số khi chia cho 1975 có cùng số dư

Giả sử có 2 số đó là

197419741974...1974 (có m nhóm số 1974) và 19741974...1974 (có n nhóm số 1974)

Giả sử m>n thì

197419741974...1974 - 19741974...1974=197419741974...1974000...0 (có m-n nhóm số 1974 và 4xn chữ số 0) chia hết cho 1975

\(\overline{abcabc}\)

\(=10^5\cdot a+10^4\cdot b+10^3\cdot c+10^2\cdot a+10^1\cdot b+10^0\cdot c\)

\(=100100\cdot a+10010b+1001c\)

\(=91\left(1100a+110b+11c\right)⋮91\)

6 tháng 7 2017

abcabc = 1001xabc = 11x91xabc = 13x77xabc nên abcabc bao giờ cũng chia hết cho 11 và 13

29 tháng 10 2021

Biết: abcabc = abc. (7.11.13) => (đpcm)

1 tháng 1 2019

ta có \(2^n\equiv0\left(mod4\right)\)với \(\left(n\in N;n>1\right)\)

Đặt \(2^n=4k\left(k\in Z^+;k\ge1\right)\)

\(\Rightarrow2^{2^n}-1=2^{4k}-1=\left(2^k\right)^4-1\)

Theo định lý fermat nhỏ ta có :

\(\left(2^k\right)^4=\left(2^k\right)^{5-1}\equiv1\left(mod5\right)\)

\(\Rightarrow\left(2^k\right)^4-1\equiv0\left(mod5\right)\)

\(\Rightarrow Q.E.D\)

22 tháng 11 2016

số nguyên tố nhỏ nhất : 2

số lớn nhất có 1 chữ số : 9

số nguyên số chia hết cho 5 ( có 1 chữ số ) : 5

số nhỏ nhất chia hết cho 5 ( có 1 chữ số ) : 5

abcd = 2955

22 tháng 11 2016

Số nguyên tố nhỏ nhất là 2 => a = 2

Số lớn nhất có 1 chữ số là 9 => b = 9

Số nguyên tố chia hết cho 5 là 5 => c = 5

Số nhỏ nhất chia hết cho 5 là 0 => d = 0

abcd = 2950. Năm đó là năm 2950

Mình thấy nó vô lí thế nào ấy