Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo định lý Fermat nhỏ ta có:
\(6^{11-1}\equiv 1\pmod {11}\)
\(\Leftrightarrow 6^{10}\equiv 1\pmod {11}\Rightarrow (6^{10})^{59}\equiv 1\pmod {11}\)
\(\Rightarrow 6^{590}\equiv 1\pmod {11}\Rightarrow 6^{592}\equiv 6^2\equiv 36\pmod {11}\)
\(\Rightarrow 6^{592}+8\equiv 36+8\equiv 44\equiv 0\pmod {11}\)
Hay: \(6^{592}+8\vdots 11\) (đpcm)
dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy
a, 11n+2+122n+1
= 11n.121+12.122n
= 11n.(133-12)+12.122n
= 11n.133-11nn .12+12.122n
=12.(144n-11n)+11n. 133
Có 144nn-11n \(⋮\)144-11=133
11n.133\(⋮\)133
=> dpcm
Giải kiểu pháp:
\(1+5^2+...+5^{n-1}=\frac{5^n-1}{4}\)
\(5^n+5=4\left(1+5+..+5^{n-1}\right)+6\)
=> cần C/m cái (...) chia hết cho 6 chính là toán lớp 6
1110-1=(11-1)(119+118+...+11)=10(119+118+...+11)⋮10
Vì 1110-1⋮10=>11x-1⋮10<=>(119+118+...+11)⋮10
=>10(119+118+...+11)⋮100
=>1110-1⋮100
Chứng minh tử thức (hoặc mẫu thức) chia hết cho 11 thì mẫu thức (hoặc tử thức) chia hết cho 11 nghĩa là ta chứng minh nếu \(k^2-5k+8\)chia hết cho 11 thì \(k^2+6k+9\)cũng chia hết cho 11 và ngược lại.
Ta có :
\(k^2-5k+8\)chia hết cho 11
Mà \(11k\)chia hết cho 11
\(11\)chia hết cho 11
\(\Rightarrow k^2-5k+8+11k+11\)chia hết cho 11
\(\Rightarrow k^2+6k+19\)chia hết cho 11
Chứng minh ngược lại :
\(k^2+6k+19\)chia hết cho 11
Mà \(11k;11\)chia hết cho 11
\(\Rightarrow k^2+6k+19-11k-11\)chia hết cho 11
\(\Rightarrow k^2-5k+8\)chia hết cho 11
Vậy ...