Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{2013}=2.2...2.2\left(2013\right)\)
\(5^{2013}=5.5...5.5\left(2013\right)\)
Viết liền:
\(2.2...2.2.5.5...5.5\)
Mà \(2.5=10\)
\(\Rightarrow2.2...2.2.5.5...5.5\)
\(=\left(2.5\right).\left(2.5\right)...\left(2.5\right).\left(2.5\right)\)
\(=10^{2013}\)
\(=10.10...10.10\left(2013\right)\)
Có \(2013\) chữ số \(0\) và \(1\)chữ số \(1\)
Vậy có tất cả \(2014\)chữ số
Giải :Giả sử số 21991 có x chữ số , số 51991 có y chữ số . Cần chứng minh rằng x + y = 1992
Số tự nhiên nhỏ nhất có x chữ số là 10 x - 1 , số tự nhiên nhỏ nhất có x + 1 chữ số là 10x , ta có :
10x - 1 < 21991 < 10x . Tương tự 10y - 1 < 51991 < 10y
Do đó 10x - 1 < 21991 . 51991 < 10x . 10y
Suy ra : 10x + y - 2 < 101991 < 10x + y
x + y < 1991 < x + y
Do x + y ∈N nên x + y - 1 = 1991 , do đó x + y = 1992
Vậy 21991 và 51991 viết liền nhau tạo thành số có 1992 chữ số (đpcm)
chúc bn học tốt !
Giải :
Giả sử 21991 có x chữ số , 51991 có y chữ số .
Cần chứng minh rằng x + y = 1992 .
Số tự nhiên nhỏ nhất có x chữ số là 10x-1 . Số tự nhiên nhỏ nhất có x + 1 chữ số là 10x.
Ta có : 10x-1 < 21991< 10x
Tương tự : 10y-1 < 51991 < 10y
Do đó : 10x-1, 10y-1 < 21991, 51991 < 10x , 10y .
=> 10x+y-2 < 101991 < 10x+y
x + y - 2 < 1991 < x + y
Do x + y \(\in\)N nên x + y - 1 = 1991
Do đó x + y = 1992
Vậy 21991 và 51991 viết liền nhau tạo thành số có 1992 chữ số .
Gọi số 41009 là số có a chữ số(a thuộc N,a khác 0)
Gọi số 251009 là số có b chữ số(b thuộc N,b khác 0)
Số bé nhất có a chữ số là 10a-1
=>10a-1<41009<10a (1)
10b-1<251009<10b (2)
Từ (1),(2)=>10a+b-2<1001009=1010090<10a+b
=>a+b-2<10090<a+b
Mà a+b-2<a+b-1<a+b
=>a+b-1=10090
=>a+b=10091
Vậy 2 số 41009 và số 251009 viết liền nhau sẽ tạo thành một số có 10091 chữ số
Gọi số chữ số của 41009 là a\(\left(a\inℕ^∗\right)\)
số chữ số của 251009 là b \(\left(b\inℕ^∗\right)\)
Theo bài ra ta có: \(\hept{\begin{cases}10^{a-1}< 4^{1009}< 10^a\\10^{b-1}< 25^{1009}< 10^b\end{cases}\Rightarrow10^{a-1}.10^{b-1}< 4^{1009}.25^{1009}< 10^a.10^b}\)
\(\Rightarrow10^{a-1+b-1}< 100^{1009}< 10^{a+b}\)
\(\Rightarrow10^{a+b-2}< 100^{1009}< 10^{a+b}\)
\(\Rightarrow100^{1009}=10^{a+b-1}\)
\(\Rightarrow10090=a+b-1\Rightarrow a+b=10091\)
Vậy>.........................................................................