K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2020}}\)

=>\(2S=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2019}}\)

=>\(2S-S=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2019}}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^{2020}}\)

=>\(S=1-\dfrac{1}{2^{2020}}< 1\)

nhận  xét

1/2 < 1 ; 2/3 < 1 ; 3/4 < 1 ; ... ; 2019/2020 <1.

vậy 1/2 + 2/3 + 3/4 + ...+2019/2020 <1

18 tháng 7 2019

Ta có :

S= 1/51 +1/52 +..+1/100

Vì 1/51>1/52>...>1/100 

=> S >1/100 * 50 =1/2 (1)

Vì 1/100 <1/99<...<1/51<1/50

=> S < 1/50 * 50=1 (2)

Từ (1),(2) => 1/2 < S<1

P=1/2^2+1/2^3+...+1/2^2018 

2P=1/2 +1/2^2 +...+1/2^2017

=> 2P-P= (1/2 +1/2^2 +...+1/2^2017)-(1/2^2+1/2^3+...+1/2^2018 )

=> P=1/2 -1/2^2018 <1/2 <3/4

18 tháng 7 2019

Ta có: \(\frac{1}{51}>\frac{1}{100};\frac{1}{52}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{100}.50=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}\)

Ta có \(\frac{1}{51}< \frac{1}{50};\frac{1}{52}< \frac{1}{50};...;\frac{1}{100}< \frac{1}{50}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{50}.50=1\)

\(\Rightarrow S< 1\)

8 tháng 4 2022

`Answer:`

 \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{31}+\frac{1}{32}\)

a) Ta thấy:

\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)

\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)

\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)

\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>16.\frac{1}{32}=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}\)

b) Ta thấy:

\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 3.\frac{1}{3}\)

\(\frac{1}{6}+...+\frac{1}{11}< 6.\frac{1}{6}\)

\(\frac{1}{12}+...+\frac{1}{23}< 12.\frac{1}{12}\)

\(\frac{1}{24}+...+\frac{1}{32}< 9.\frac{1}{24}\)

\(\Rightarrow S< \frac{1}{2}+1+1+1+\frac{9}{24}=\frac{31}{8}< \frac{9}{2}\)

22 tháng 1 2020

\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^5}+...+\frac{2020}{5^{2020}}\)

\(\Rightarrow5A=1+\frac{2}{5}+\frac{3}{5^2}+\frac{4}{5^3}+...+\frac{2020}{5^{2019}}\)

\(\Rightarrow5A-A=4A=1+\left(\frac{2}{5}-\frac{1}{5}\right)+\left(\frac{3}{5^2}-\frac{2}{5^2}\right)+...+\left(\frac{2020}{5^{2019}}-\frac{2019}{5^{2019}}\right)-\frac{2020}{5^{2020}}\)

\(\Leftrightarrow4A=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}-\frac{2020}{5^{2020}}\)

\(B=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)

\(\Rightarrow5B=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)

\(\Rightarrow4B=1-\frac{1}{5^{2019}}\)

\(\Rightarrow B=\frac{1}{4}-\frac{1}{4.5^{2019}}\)

\(\Rightarrow4A=1+B-\frac{2020}{5^{2020}}\)

\(\Rightarrow A=\frac{5}{16}-\frac{1}{5^{2019}}\left(\frac{1}{4}+\frac{2020}{5}\right)=\frac{5}{16}-\frac{1617}{4.5^{2019}}\)

\(16>\frac{1617}{4.5^{2019}}\Rightarrow A=\frac{1}{4}+\left(\frac{1}{16}-\frac{1617}{4.5^{2019}}\right)>\frac{1}{4}\)

\(\frac{5}{16}< \frac{1}{3}\Rightarrow A< \frac{1}{3}\)

\(\Rightarrow\frac{1}{4}< A< \frac{1}{3}\left(Đpcm\right)\)

1 tháng 4 2016

copy à

câu nào cũng trả lời.trốn học à

14 tháng 4 2019

S<1/2^2 + 1/2.3 + 1/3.4 +...+ 1/8.9

S<1/4 + 1/2 - 1/3 + 1/3 - 1/4+...+1/8 - 1/9

S<1/4 + 1/2 - 1/9

S<23/36<8/9 (1)

Mặt khác: S>1/2^2 + 1/3.4 + ...+ 1/9*10

S>1/4 + 1/3 - 1/4 + ... + 1/9 - 1/10

S>1/4 + 1/3 - 1/10

S>29/60>2/5 (2)

Từ (1),(2)

=> 2/5<S<8/9

17 tháng 4 2019

thanksshiha