K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2015

S=1/2+1/2^2+1/2^3+...+1/2^20

2S=1+1/2+1/2^2+....+1/2^19

=>2S-S=(1+1/2+1/2^2+...+1/2^19)-(1/2+1/2^2+1/2^3+...+1/2^20)

S=1-1/2^20<1

=>S<1

Vậy S<1

8 tháng 4 2015

S=1/2+1/2^2+1/2^3+...+1/2^20

2S=1+1/2+1/2^2+....+1/2^19

=>2S-S=(1+1/2+1/2^2+...+1/2^19)-(1/2+1/2^2+1/2^3+...+1/2^20)

S=1-1/2^20<1

=>S<1

Vậy S<1

 

10 tháng 5 2018

\(S=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{20}}\\ 2S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{19}}\\ 2S-S=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{19}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{20}}\right)\\ S=1-\dfrac{1}{2^{20}}\\ =>S< 1\\ \)

vậy S bé hơn 1

23 tháng 7 2015

S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{20}}\)

2S = \(1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{19}}\)

=> 2S - S = \(1-\frac{1}{2^{19}}\)

=> S = \(1-\frac{1}{2^{19}}<1\)  (đpcm)

13 tháng 4 2015

bài này có trông sách nâng cao và phataienf toán 6ss tr

22 tháng 5 2015

nen 2S=1+1/2+1/2 mu 2 +....1/2 mu 19

do do 2S-S=1-1/2 mu 20 .vay S=1-1/2 mu 20 <1

21 tháng 3 2017

\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)

\(2S-S=1-\frac{1}{2^{20}}\)

\(S=1-\frac{1}{2^{20}}< 1\)-> ĐPCM.

21 tháng 4 2019

\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)

\(\Rightarrow2S=1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\)

\(\Rightarrow2S-S=\left(1+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\right)\)

\(S=1-\frac{2}{2^{20}}\)

\(\Rightarrow S< 1\left(đpcm\right)\)

Ta có :\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)

\(S=\frac{1\cdot2^{19}}{2\cdot2^{19}}+\frac{1\cdot2^{18}}{2^2\cdot2^{18}}+\frac{1\cdot2^{17}}{2^3\cdot2^{17}}+...+\frac{1\cdot2}{2^{19}\cdot2}+\frac{1}{2^{20}}\)

\(S=\frac{2^{19}}{2^{20}}+\frac{2^{18}}{2^{20}}+\frac{2^{17}}{2^{20}}+...+\frac{2}{2^{20}}+\frac{1}{2^{20}}\)

\(S=\frac{2^{19}+2^{18}+2^{17}+...+2^1+1}{2^{20}}\)

\(S=\frac{2^0+2^1+2^2+...+2^{19}}{2^{20}}\)

Xét: Gọi \(N=2^0+2^1+2^2+...+2^{19}\)

\(2\cdot N=2^1\cdot2^2\cdot2^3\cdot...\cdot2^{20}\)

\(2\cdot N-N=\left(2^1+2^2+2^3+...+2^{20}\right)-\left(2^0+2^1+2^2+...+2^{19}\right)\)

\(N=2^{20}-2^0\)

Thay N vào S, ta có :

\(S=\frac{2^{20}-2^0}{2^{20}}\)

\(S=\frac{2^{20}}{2^{20}}-\frac{1}{2^{20}}\)

\(S=1-\frac{1}{2^{20}}\)

Vì \(1-\frac{1}{2^{20}}< 1\Rightarrow S< 1\left(Đpcm\right).\)

Vậy : \(S< 1.\)

2 tháng 4 2016

100-(1+1/2+1/3+1/4+...+1/100)= (1+1+1+..+1)+(1+1/2+1/3+1/4+...+1/100) = (1-1)+(1-1/2)+(1-/3)+...+(1-1/100)

                                            = 1/2+2/3+3/4+...+99/100 (đpcm)