\(\left(1-m\right)x^5+9mx^2-16x-m=0\) có ít nhất 2 nghiệm pb với mọi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Dễ thấy hàm \(f\left(x\right)=\left(1-m\right)x^5+9mx^2-16x-m\) liên tục trên R với mọi giá trị của m

Ta có:

\(f\left(-2\right)=\left(1-m\right).\left(-2\right)^5+9m.\left(-2\right)^2-16.\left(-2\right)-m\)

           \(=-32\left(1-m\right)+4.9m+32-m=67m\)

\(f\left(0\right)=-m\)

\(f\left(2\right)=\left(1-m\right).2^5+9m.2^2-16.2-m\)

        \(=32\left(1-m\right)+4.9m-32-m=3m\)

Nếu \(m=0\) thì ta có đpcm

Nếu \(m\ne0\) thì

    \(\left\{{}\begin{matrix}f\left(-2\right).f\left(0\right)=-67m^2< 0\\f\left(0\right).f\left(2\right)=-3m^2< 0\end{matrix}\right.\)

Do đó pt đã cho có ít nhất một nghiệm trên mỗi khoảng \(\left(-2;0\right)\) và \(\left(0;2\right)\)

\(\Rightarrowđpcm\)

Vậy ta có điều phải chứng minh

23 tháng 12 2023

Sao lại phải thay -2 và 2 vô vậy

4 tháng 3 2019

(1−m2)(x+1)3+x2−x−3=0

f(x)=(1−m2) (x+1)3+x2−x−3 là hàm đa thức liên tục trên R. Do đó nó liên tục trên [-2; -1]

Ta có f(−1)=−1<0 f(−2)=m2+2>0 nên f(−1) f(−2)<0 với mọi m.

Do đó, phương trình f(x)=0 luôn có ít nhất một nghiệm trong khoảng (-2; -1) với mọi m. Nghĩa là, phương trình (1−m2) (x+1)3+x2−x−3 luôn có nghiệm với mọi m.

5 tháng 3 2019

Do hàm số \(\left(1-m^2\right)\left(x+1\right)^3+x^2-x-3\) là hàm đa thức nên nó liên tục trên R, nên liên tục trên \(\left[-2,-1\right]\)

\(f\left(-1\right)=-1< 0;f\left(-2\right)=m^2+2>0\)

\(\Rightarrow f\left(1\right).f\left(-2\right)< 0\)

Do đó phương trình luôn có nghiệm

NV
1 tháng 4 2020

a/ Đề không rõ ràng bạn

Từ câu b trở đi, dễ dàng nhận ra tất cả các hàm số đều liên tục trên R

b/ Xét \(f\left(x\right)=x^3+3x^2-1\)

Ta có: \(f\left(-3\right)=-1\) ; \(f\left(-2\right)=3\)

\(\Rightarrow f\left(-3\right).f\left(-2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-3;-2\right)\)

\(f\left(0\right)=-1\Rightarrow f\left(-2\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-2;0\right)\)

\(f\left(1\right)=3\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(0;1\right)\)

\(\Rightarrow f\left(x\right)\) luôn có 3 nghiệm phân biệt

NV
1 tháng 4 2020

c/\(f\left(x\right)=m\left(x-1\right)^3\left(m^2-4\right)+x^4-3\)

\(f\left(-2\right)=13\) ; \(f\left(1\right)=-2\)

\(\Rightarrow f\left(-2\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-2;1\right)\)

\(f\left(2\right)=13\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(1;2\right)\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm

d/ \(f\left(x\right)=5sin3x+x-10\)

\(f\left(0\right)=-10\)

\(f\left(4\pi\right)=4\pi-10\)

\(\Rightarrow f\left(0\right).f\left(4\pi\right)=-10\left(4\pi-10\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;4\pi\right)\) hay \(f\left(x\right)\) luôn có nghiệm

NV
18 tháng 3 2021

Đặt \(f\left(x\right)=x^5+x^2-\left(m^2+2\right)x-1\Rightarrow f\left(x\right)\) liên tục trên R

Ta có: \(f\left(0\right)=-1< 0\) 

\(f\left(-1\right)=m^2+1>0\) ; \(\forall m\)

\(\Rightarrow f\left(0\right).f\left(-1\right)< 0\) ;\(\forall m\)

\(\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\) (đpcm)

26 tháng 2 2022

nếu bài này mà chứng minh có 3 nghiệm thì mình phải làm như thế nào ạ..?

NV
1 tháng 3 2022

Đặt \(f\left(x\right)=5x^3+\left(2m-1\right)x^2+m+6\)

Hàm số liên tục trên R

\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(5x^3+\left(2m-1\right)x^2+m+6\right)\)

\(=\lim\limits_{x\rightarrow-\infty}x^3\left(5+\dfrac{2m-1}{x}+\dfrac{m+6}{x^3}\right)=-\infty< 0\)

\(\Rightarrow\) Luôn tồn tại 1 số thực \(a< 0\) sao cho \(f\left(a\right)< 0\)

\(\lim\limits_{x\rightarrow+\infty}\left(x^3+\left(2m-1\right)x^2+m+6\right)=\lim\limits_{x\rightarrow+\infty}x^3\left(5+\dfrac{2m-1}{x}+\dfrac{m+6}{x^3}\right)=+\infty.5=+\infty>0\)

\(\Rightarrow\) Luôn tồn tại 1 số thực \(b>0\) sao cho \(f\left(b\right)>0\)

\(\Rightarrow f\left(a\right).f\left(b\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (a;b) với mọi m

28 tháng 2 2022

same e :v