K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2023

\(x\left(x-a\right)+x\left(x-b\right)+x\left(x-c\right)=0\)

\(x^2-ax+x^2-bx+x^2-cx=0\)

\(3x^2-\left(a+b+c\right)x=0\)

\(\Delta=\left(a+b+c\right)^2\ge0\forall a,b,c\)

=> phương trình luôn có nghiệm với mọi a,b,c

14 tháng 11 2016

Ta có : \(a\left(x-b\right)\left(x-c\right)+b\left(x-c\right)\left(x-a\right)+c\left(x-a\right)\left(x-b\right)=0\)

\(\Leftrightarrow a\left[x^2-x\left(b+c\right)+bc\right]+b\left[x^2-x\left(c+a\right)+ac\right]+c\left[x^2-x\left(a+b\right)+ab\right]=0\)

\(\Leftrightarrow x^2\left(a+b+c\right)-2x\left(ab+ac+bc\right)+3abc=0\) (1)

Xét với a + b + c \(\ne\) 0 thì phương trình (1) có biệt số \(\Delta'=\left(ab+bc+ac\right)^2-3.\left(a+b+c\right).abc\)

\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)-3abc\left(a+b+c\right)\)

\(=a^2b^2+b^2c^2+c^2a^2-abc\left(a+b+c\right)\)

\(=\frac{a^2\left(b^2-2bc+c^2\right)+b^2\left(c^2-2ca+a^2\right)+c^2\left(a^2-2ab+b^2\right)}{2}\)

\(=\frac{a^2\left(b-c\right)^2+b^2\left(c-a\right)^2+c^2\left(a-b\right)^2}{2}\ge0\)

=> Phương trình (1) luôn có nghiệm trong trường hợp này.

Vậy phương trình ban đầu luôn có nghiệm với mọi a,b,c thỏa mãn \(a+b+c\ne0\)

1 tháng 8 2019

Ta có : a (xb)(xc)+b(xc)(xa)+c(xa)(xb)=0

óa[x2x(b+c)+bc]+b[x2x(c+a)+ac]+c[x2x(a+b)+ab]=0

óx2(a+b+c)−2x(ab+ac+bc)+3abc=0 (1)

Xét với a + b + c≠ 0 thì phương trình (1) có biệt số

Δ'=(ab+bc+ac)2−3.(a+b+c).abc

=a2b2+b2c2+c2a2+2abc(a+b+c)−3abc(a+b+c)=a2b2+b2c2+c2a2abc(a+b+c)

=a2(b2−2bc+c2)+b2(c2−2ca+a2)+c2(a2−2ab+b2)2 

a2(bc)2+b2(ca)2+c2(ab)22 ≥0

=> Phương trình (1) luôn có nghiệm trong trường hợp này.

Vậy phương trình ban đầu luôn có nghiệm với mọi a,b,c thỏa mãn

22 tháng 3 2019

kb nhé

8 tháng 5 2019

12345x331=...///???......................ai nhanh  mk tk cho

28 tháng 11 2018

a(x-b)(x-c)+b(x-a)(x-c)+c(x-a)(x-b)=0 (*) 
<=> (a+b+c)x^2 -2x(ab+bc+ca) +3abc =0 

D'(Delta ') = (ab+bc+ca)^2 - 3abc(a+b+c) (**) 

Áp dụng BĐT vào (**): (x+y+z)^2/3 >= xy+yz+zx 
<=> D' = (ab+bc+ca)^2 - 3abc(a+b+c) >= 0 

=> Phương trình (*) luôn có nghiệm với mọi a, b, c

Ko chắc nha !

Minh Anh

Xin lựa a;b ... c;d e rỗng tuếch :>> (ko bt đúng ko nữa).

a, Thay m = 5 vào biểu thức ta đc 

 \(x^2-2\left(5+6\right)x+5-4=0\)

\(x^2-33x+1=0\)

\(\Delta=\left(-33\right)^2-4.1.1=1089-4=1085>0\)

Nên phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{33-\sqrt{1085}}{2};x_2=\frac{33+\sqrt{1085}}{2}\)

b, Ta có :

\(\Delta=\left(2m-2\right)^2-4\left(m-4\right)=4m^2-4-4m+16=4m^2-4m+12\)

\(=\left(4m^2-4m+1\right)+11\ge11\forall m\)

Vậy phuwong trình có 2 nghiệm phân biệt vs mọi x 

a, Với x=2

PT<=> 4+2(m-2)-m+1=0

<=> m=-1

Vậy m=-1 thì phương trình có 1 nghiệm x=2

Ý sau dùng hệ thức Vi-et là ra

Câu 1: 

Theo đề, ta có: \(x_1-x_2=1\)

\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-2x_1x_2=m^2-2\cdot12=m^2-24\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1-x_2=m^2-24\\x_1-x_2=-m^2+24\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2-24=1\\-m^2+24=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m^2=25\\m^2=23\end{matrix}\right.\)

hay \(m\in\left\{5;-5;\sqrt{23};-\sqrt{23}\right\}\)