Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$f(x)=ax^2+bx+c$ liên tục trên $[0; \frac{1}{3}]$
$f(0)=c$
$f(\frac{1}{3})=\frac{1}{9}a+\frac{1}{3}b+c$
$\Rightarrow 18f(\frac{1}{3})=2a+6b+18c$
$\Rightarrow f(0)+18f(\frac{1}{3})=2a+6b+19c=0$
$\Rightarrow f(0)=-18f(\frac{1}{3})$
$\Rightarrow f(0).f(\frac{1}{3})=-18f(\frac{1}{3})^2\leq 0$
$\Rightarrow$ pt luôn có nghiệm trong $[0; \frac{1}{3}]$ (đpcm)
Tham khảo:
Xét hàm số g(x) = f(x) − f(x + 0,5)
Ta có
g(0) = f(0) − f(0 + 0,5) = f(0) − f(0,5)
g(0,5) = f(0,5) − f(0,5 + 0,5) = f(0,5) − f(1) = f(0,5) − f(0)
(vì theo giả thiết f(0) = f(1)).
Do đó,
\(a=0\Rightarrow b=-\frac{9}{21}\)
\(3x+b=0\Rightarrow x=-\frac{b}{3}=\frac{3}{21}\in\left(0;1\right)\)
\(b=0\Rightarrow a=-\frac{9}{2}\)
\(ax^2+3x=0\Rightarrow x\left(ax+3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{3}{a}=\frac{2}{3}\in\left(0;1\right)\end{matrix}\right.\)
Với \(ab\ne0\)
\(f\left(0\right)=b\) ; \(f\left(\frac{2}{3}\right)=\frac{4a}{9}+2+b=\frac{2}{9}\left(2a+9+\frac{9}{2}b\right)=-\frac{11}{3}b\)
\(\Rightarrow f\left(0\right).f\left(1\right)=-\frac{11}{3}b^2< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(0;1\right)\) (do f(x) hiển nhiên liên tục trên khoảng này)
a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.
Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).
Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.
b) Hàm số g(x) = cosx – x xác định trên R nên liên tục trên R.
Mặt khác, ta có g(0).g(π/2) = 1. (-π/2) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; π/2).
a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.
Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).
Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.
b) Hàm số g(x) = cosx - x xác định trên R nên liên tục trên R.
Mặt khác, ta có g(0).g() = 1. (-) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; ).
Cần điều kiện \(a;b;c\) có ít nhất 2 số khác 0
- Với \(a=0\Rightarrow x=-\frac{c}{b}\) mà \(6b+19c=0\Rightarrow-\frac{c}{b}=\frac{6}{19}\Rightarrow x=\frac{6}{19}>0\)
- Với \(c=0\Rightarrow2a+6b=0\Rightarrow-\frac{b}{a}=\frac{1}{3}\)
\(ax^2+bx=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{b}{a}=\frac{1}{3}>0\end{matrix}\right.\)
- Với \(abc\ne0\)
\(2a+6b+19c=0\Rightarrow2\left(a+3b\right)=-19c\Rightarrow a+3b=-\frac{19}{2}c\)
Đặt \(f\left(x\right)=ax^2+bx+c\)
Ta có: \(f\left(0\right)=c\) ; \(f\left(\frac{1}{3}\right)=\frac{a}{9}+\frac{b}{3}+c\)
\(\Rightarrow f\left(0\right).f\left(\frac{1}{3}\right)=c\left(\frac{a}{9}+\frac{b}{3}+c\right)=\frac{1}{9}c\left(a+3b+9c\right)\)
\(=\frac{1}{9}c\left(-\frac{19}{2}c+9c\right)=-\frac{1}{18}c^2< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;\frac{1}{3}\right)\)
Vậy phương trình luôn có một nghiệm dương