Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phân số n+1/2n+3 là phân số tối giản thì (n+1; 2n+3) =1
Gọi (n+1; 2n+3) =d => n+1 \(⋮\)d; 2n+3 \(⋮\)d
=> (2n+3) - (n+1) \(⋮\)d
=> (2n+3) -2(n+1) \(⋮\)d
=> 2n+3 -2n -2 \(⋮\)d
=> 1 \(⋮\)d
=> n+1/2n+3 là phân số tối giản
Vậy...
Gọi d là ƯC(n+1 ; 2n + 3)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
=> ( 2n + 3 ) - ( 2n + 2 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(n +1 ; 2n + 3) = 1
=> \(\frac{n+1}{2n+3}\)tối giản ( đpcm )
Gọi d = ƯCLN ( 14n + 3 ; 21n + 5 )
Ta có :
14n + 3 \(⋮\)d ; 21n + 5 \(⋮\)d
=> 3 ( 14n + 3 ) \(⋮\)d ; 2 ( 21n + 5 ) \(⋮\)d
=> 42n + 9 \(⋮\)d ; 42n + 10 \(⋮\)d
=> ( 42n + 10 ) - ( 42n + 9 ) \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\){ 1 ; - 1 }
=> \(\frac{14n+3}{21n+5}\)là phân số tối giản
gọi d là ƯCLN ( n + 2 ; 2n + 3 )
Ta có : n + 2 \(⋮\)d \(\Rightarrow\)2 . ( n + 2 ) \(⋮\)d ( 1 )
2n + 3 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)2 . ( n + 2 ) - ( 2n + 3 )
= ( 2n + 4 ) - ( 2n + 3 ) = 1 \(⋮\)d
\(\Rightarrow\)d = 1
Mà phân số tối giản thì có ƯCLN của tử số và mẫu số bằng 1
Vậy phân số \(\frac{n+2}{2n+3}\)là phân số tối giản
để phân số là phân số tối giản điều kiên là : \(\left(n+2;2n+3\right)=1\)
Ta gọi ước chung lớn nhất của \(n+2;2n+3\)là \(d\)ta có: \(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow n+4-n-3⋮d\)\(\Rightarrow1⋮d\Leftrightarrow1\)
do đó \(UCLN\left(n+2;2n+3\right)=1\)vậy phân số là phân số tối giản
Gọi ƯCLN(2n + 3 ; 4n + 8) = d
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Rightarrow4n+8-\left(4n+6\right)⋮d}\)
=> \(2⋮d\Rightarrow d\inƯ\left(2\right)\Rightarrow d\in\left\{\pm1;\pm2\right\}\)
Vì 2n + 3 là số lẻ ; 4n + 8 là số chẵn
=> ƯCLN(2n + 3 ; 4n + 8) \(\ne\)\(\pm\)2
=> ƯCLN(2n + 3 ; 4n + 8) \(=\pm1\)
=> \(\frac{2n+3}{4n+8}\)là phân số tối giản
+)Gọi d là số nguyên tố là ƯCLN(2n+3,4n+8)
+)2n+3\(⋮\)d;4n+8\(⋮\)d
+)2n+3\(⋮\)d
=>2.(2n+3)\(⋮\)d
=>4n+6\(⋮\)d(1)
+)4n+8\(⋮\)d
+)Từ (1) và (2)
=>(4n+8)-(4n+6)\(⋮\)d
=>4n+8-4n-6\(⋮\)d
=>2\(⋮\)d
=>d\(\in\)Ư(2)={1;2}
Vì 2n+3\(⋮̸\)2
=>ƯCLN(2n+3,4n+8)=1
Vậy \(\frac{2n+3}{4n+8}\)tối giản với mọi n
Chúc bn học tốt.Có j ko hiểu hỏi mk nha
MK chỉ chững minh đc câu b thui!
b) Gọi (2n+1,6n+7)=d
ta có: 2n+1 \(⋮\)d => 3(2n+1)\(⋮\) d => 6n+3 \(⋮\)d (1)
6n+7 \(⋮\)d (2)
Từ (1) và(2),suy ra 6n+7-(6n+3) \(⋮\)d hay 6n+7-6n-3\(⋮\)d=> 4 \(⋮\)d
Ư(4)={1,2,4,-1,-2,-4}
Ta có 2n+1 ko chia hết cho 2,4,-2,-4
Suy ra....
Gọi d là ƯCLN của 2n + 3 và n + 1
=> \(\left\{{}\begin{matrix}2n+3⋮d\\n+1⋮d\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2n+3⋮d\\2n+2⋮d\end{matrix}\right.\)
=> (2n + 3) - (2n + 2) ⋮ d
=> 1 ⋮ d
=> d = 1
=> ƯCLN (2n + 3; n + 1) = 1
=> \(\dfrac{2n+3}{n+1}\) là phân số tồi giản