K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

C1: Ta có: 49 chia 3 dư 1

=> 49^n chia 3 dư 1

13 chia 3 dư 1 

=> 13^n chia 3 dư 1

269 chia 3 dư 2

=>  \(49^n+296.13^n\)chia 3 dư 1+2.1=3  

=> \(49^n+296.13^n\)chia hết cho 3

C2: Hoặc bạn có thể làm theo cách đồng dư

\(49\equiv1\left(mod3\right)\)

=> \(49^n\equiv1^n\equiv1\left(mod3\right)\)

\(13\equiv1\left(mod3\right)\)

=> \(13^n\equiv1^n\equiv1\left(mod3\right)\)

\(296\equiv2\left(mod3\right)\)

=> \(49^n+296.13^n\equiv1+2.1\equiv3\equiv0\left(mod3\right)\)

=> \(49^n+296.13^n\)chia hết cho 3

24 tháng 7 2019

Thêm đk n thuộc N*. Quy nạp thử xem nào:) (em ko chắc đâu nhá)

Với n = 1 thì nó đúng

Giả sử nó đúng với n = k tức là \(49^k+296.13^k⋮3\)

Ta chứng minh nó đúng với n = k + 1. Cần chứng minh \(49^k.49+296.13^k.13⋮3\)

\(\Leftrightarrow49\left(49^k+296.13^k\right)-296.13^k.36⋮3\)

Điều này hiển nhiên đúng do giả thiết quy nạp và \(296.13^k.36\) chia hết cho 3

4 tháng 3 2020

Ta có:

\(46^n+296.13^n\\ =46^n-13^n+297.13^n\\ =\left(46-13\right).X+9.33.13^n\\ =33.\left(X+9.13^n\right)⋮33\left(1\right)\)

Lại có:

\(46^n+296.13^n\\ =46^n+13^n+295.13^n\\ =\left(46+13\right).Y+59.5.13^n\\ =59.\left(Y+5.13^n\right)⋮59\left(2\right)\)

Mà 59 và 33 là 2 số nguyên tố cùng nhau (3)

Từ (1);2 và (3)\(\Rightarrow\)biểu thức trên chia hết cho:59.33=1947 (đpcm)

14 tháng 8 2015

x5-x=x.(x4-1)

với x=5 thì x5-x chia hết cho 5

với x khác 5 thì :

x4 có tận cùng là 1 hoặc 6

=>x4-1 có tận cùng là 5 hoặc 0=>x4-1 chia hết cho 5

=>x5-x chia hết cho 5

Vậy x5_ x chia hết cho 5.

 

6 tháng 1 2015

Bài 1: 

a) P=(a+5)(a+8) chia hết cho 2

Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Vậy P luôn chia hết cho 2 với mọi a

b) Q= ab(a+b) chia hết cho 2

Nếu a chẵn => ab(a+b) chia hết cho 2

Nếu b chẵn => ab(a+b) chia hết cho 2

Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2

Vậy Q luôn chia hết cho 2 với mọi a và b

 

10 tháng 7 2015

bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).

Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10                   (1)

ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2

=> 5n(n-1)n(n+1) chia hết cho 10                                                                     (2)

Từ (1) và (2) => n5- n chia hết cho 10