K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2022

Vì p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2 ( k là stn khác 0).

Th1: p=3k+1

=> 14p+1= 14(3k+1)+1=42k+15 chia hết cho 3

Mà 14p+1> 3=> 14p+1 là hợp số ( Loại)

=>p=3k+2.Vì p là số nguyên tố lớn hơn 3 nên p lẻ

=> 7p+1 là số chẵn=> 7p+1 chia hết cho 2 (1)

Ta có: 7p+1= 7(3k+2)+1= 21k+15 chia hết cho 3=> 7p+1 chia hết cho 3 (2)

   Từ (1) và (2)=> 7p+1 chia hết cho 6 ( do (2,3)=1)

28 tháng 12 2017

Vì 9 là SNT ( số nguyên tố ) lớn 3

=> p khi chia cho 3 có 2 dạng: 

     p = 3k + 1 hoặc p = 3k + 2 ( k thộc N* )

+) với: p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1

                                          = 6k + 2 + 1 = 6k + 3 chia hết cho 3 và lớn hơn 3

=> 2p + 1 là hợp số ( loại )

Vậy: p = 3k + 2

=> 4p + 1 = 4 . ( 3k + 2 ) + 1

               = 12k + 8 + 1 = 12k + 9 chia hết cho 3 và lớn hơn 3

=> 4p + 1 là hợp số ( điều phải chứng minh )

Kết luận: 

28 tháng 12 2017

p nguyên tố > 3

=> p chia 3 dư 1,2

=> 2p + 1 chia 3 dư 0, 2

Mà 2p+1 nguên tố <=> 2p+1 chia 3 dư 2 <=> p chia 3 dư 2

=> 4p+1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 chia hết cho 3

=> 4p+1 là hợp số

27 tháng 1 2017

Vì p là số nguyên tố lớn hơn 3 => p = 3k + 1 hoặc 3k + 2 ( k thuộc N* )

+ Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 => 3k + 3 là hợp số ( Loại )

+ Nếu p = 3k + 2 => p + 2 = 3k + 2 + 2 = 3k + 4 là số nguyên tố

                         => p + 1 = 3k + 2 + 1 = 3k + 3 => 2( 3k + 3 ) = 6k + 6 chia hết cho 6

mk nha mk cx hk chắc mk đúng mk ms lớp 6 thôi

12 tháng 8 2017

Ta có: Vì p là số nguyên tố lớn hơn 3 nên:

p chia 3 dư 1 hoặc p chia 3 dư 2

Nếu p chia 3 dư 1 thì (p - 1) chia hết cho 3

Nếu p chia 3 dư 2 thì (p + 4) chia hết cho 3

\(\Rightarrow\)(p - 1).(p + 4) chia hết cho 3 (1)

Vì p là số nguyên tố lớn hơn 3 nên 3 là 1 số lẻ

Nếu p chia 3 dư 1 thì (p+4) chia hết cho 2

Nếu p chia 3 dư 2 thì (p - 1) chia hết cho 2

\(\Rightarrow\)(p-1).(p+4) chia hết cho 2 (2)

Từ (1) và (2) \(\Rightarrow\)(p - 1).(p+4) chia hết cho 6

5 tháng 3 2020

Cách 1:

p là số nguyên tố, p>3 => p không chia hết cho 3 (1)

p+2 là số nguyên tố, p+2>5>3 => p+2 không chia hết cho 3 (2)

Ta có: p(p+1)(p+2) là tích 3 số tự nhiên liên tiếp => p(p+1)(p+2) chia hết cho 3 (3)

Từ (1),(2),(3) => p+1 chia hết cho 3 (*)

Ta lại có: p là số nguyên tố, p>3 => p lẻ => p+1 chẵn => p+1 chia hết cho 2 (**)

Mà (2;3)=1 (***)

Từ (*),(**),(***) => p+1 chia hết cho 6.

5 tháng 3 2020

Cách 2:

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.