Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo bđt cauchy ta có:
\(a^3+b^3+b^3\ge3\sqrt[3]{a^3.b^6}=3ab^2\)
\(a^3+a^3+b^3\ge3a^2b\)
công vế theo vế ta có \(3\left(a^3+b^3\right)\ge3ab^2+3a^2b\)
\(\Leftrightarrow a^3+b^3+3\left(a^3+b^3\right)\ge a^3+3a^2b+3ab^2+b^3\)
\(\Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)
suy ra đpcm
ta luôn có \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2+a^2+b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow\dfrac{2\left(a^2+b^2\right)}{4}\ge\dfrac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow\dfrac{\left(a^2+b^2\right)}{2}\ge\dfrac{\left(a+b\right)^2}{2^2}=\left(\dfrac{a+b}{2}\right)^2\)
suy ra đpcm
a, Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\Rightarrow a=kb;c=kd\)
Thay:
\(\frac{ab}{cd}=\frac{b^2}{d^2}\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)
=> đpcm
\(\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(\Leftrightarrow\hept{\begin{cases}a+b-2c=a-b\\b+c-2a=b-c\\c+a-2b=c-a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2b-2c=0\\2c-2a=0\\2a-2b=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b-c=0\\c-a=0\\a-b=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=c\\c=a\\a=b\end{cases}}\)
\(\Leftrightarrow a=b=c\)( đpcm )
\(\Rightarrow\hept{\begin{cases}a+b-2c=a-b\\b+c-2a=b-c\\c+a-2b=a-c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2b-2c=0\\2c-2a=0\\2a-2b=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}b-c=0\\c-a=0\\a-b=0\end{cases}\Rightarrow\hept{\begin{cases}b=c\\c=a\\a=b\end{cases}\Rightarrow}a=b=c\left(dpcm\right)}\)