\(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^2+b^2}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

\(\frac{a}{b}=\frac{c}{d}\)

=> \(\frac{a}{c}=\frac{b}{d}=>\frac{a^2}{c^2}=\frac{c^2}{d^2}=\frac{a.b}{b.c}=\frac{a}{c}\)

=> \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)

=> dpcm

 

26 tháng 12 2019

a) Đặt  \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2), ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\)(1)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2), ta có: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)

26 tháng 12 2019

a) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{a-b}{c-d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)

6 tháng 7 2018

a/\(\left(2-x\right)\times-3=\left(3x-1\right)\times4\)4

\(\Rightarrow-6+3x=12x-4\)

\(\Rightarrow-2=9x\)

\(\Rightarrow x=\frac{-2}{9}\)

bài b cx tương tự nha

ta có;\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)(THEO TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU)

\(\Rightarrowđpcm\)

1 tháng 6 2016

Từ x-y=7

=>x=y+7

Thay x=y+7 vào B ta được:

\(B=\frac{3.\left(y+7\right)-7}{2.\left(y+7\right)+y}-\frac{3y+7}{2y+\left(y+7\right)}\)\(=\frac{3y+21-7}{2y+14+y}-\frac{3y+7}{3y+7}=\frac{3y+14}{3y+14}-\frac{3y+7}{3y+7}=1-1=0\)

Vậy B=0 khi x-y=7

1 tháng 6 2016

bài 1:

 \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)=> (a+b)(c-d)=(a-b)(c+d)

=> ac-ad+bc-bd=ac+ad-bc-bd

=>2ad=2bc

=> ad=bc

=> \(\frac{a}{b}\)=\(\frac{c}{d}\)

vậy Nếu \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\) thì \(\frac{a}{b}\)=\(\frac{c}{d}\)

5 tháng 12 2017

a,Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)\(\Rightarrowđpcm\)

b,Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)\(\Rightarrowđpcm\)

18 tháng 7 2016

\(\frac{a-c}{c-b}=\frac{a}{b}\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow ba-bc=ac-ab\)

\(\Rightarrow2ab=ac+bc=c\left(a+b\right)\)

\(\Rightarrow\frac{2ab}{\left(a+b\right)}=c\Rightarrow\frac{a+b}{2ab}=\frac{1}{c}\Rightarrow\frac{1}{2}.\left(\frac{a}{ab}+\frac{b}{ab}\right)=\frac{1}{c}\Rightarrow\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{a}\right)=\frac{1}{c}\)

Câu b ấy, hình như sai đề, phải bằng \(\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}\)có lẽ mới đúng

18 tháng 7 2016

nếu như câu b đề như thế thì bạn có thể giải giúp mình được ko? mình cảm ơn bạn nhé!

21 tháng 11 2016

Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có: \(\frac{a.b}{c.d}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (1)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\) (2)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\) (3)

Từ (1), (2) và (3) suy ra \(\frac{a.b}{c.d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)

21 tháng 11 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)

ta có: \(\frac{a.b}{c.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{b^2.k^2+2b^2.k+b^2}{d^2.k^2+2d^2.k+d^2}=\frac{b^2}{d^2}\left(2\right)\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2}{d^2}\left(3\right)\)

từ 1,2 và 3 ta có điều phải chứng minh