Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\cdot b^2k^2+3\cdot bk\cdot b}{11\cdot b^2\cdot k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\cdot d^2k^2+3dk\cdot d}{11\cdot d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)
Do đó: VT=VP(đpcm)
Chứng minh \(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\) ta đi chứng minh \(\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11c^2-8d^2}\)
Cách 1: Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> a = bk; c = dk
=> \(\frac{7a^2+3ab}{7c^2+3cd}=\frac{7b^2k^2-8b^2}{7d^2k^2-8d^2}=\frac{\left(7k^2-8\right)b^2}{\left(7k^2-8\right)d^2}=\frac{b^2}{d^2}\)
\(\frac{11a^2-8b^2}{11c^2-8d^2}=\frac{11b^2k^2-8b^2}{11d^2k^2-8d^2}=\frac{\left(11k^2-8\right)b^2}{\left(11k^2-8\right)d^2}=\frac{b^2}{d^2}\)
=> \(\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11c^2-8d^2}\)=> \(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
Cách 2: \(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\)=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)=> \(\frac{a^2}{c^2}=\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11c^2-8d^2}\)
Vậy \(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
a/b = c/d => a/c = b/d
=> a2 / c2 = b2 / d2 = ab / cd
<=> 7a2 / 7c2 = 11a2 / 11c2 = 8b2 / 8d2 = 3ab / 3cd
=> 7a2 + 3ab / 7c2 + 3cd = 11a2 - 8b2 / 11c2 - 8d2
=> 7a2 + 3ab / 11a2 - 8b2 = 7c2 + 3cd / 11c2 - 8d2 (đpcm)
bài này mk giải rùi:
a/b = c/d => a/c = b/d
=> a2 / c2 = b2 / d2 = ab / cd
<=> 7a2 / 7c2 = 11a2 / 11c2 = 8b2 / 8d2 = 3ab / 3cd
=> 7a2 + 3ab / 7c2 + 3cd = 11a2 - 8b2 / 11c2 - 8d2
=> 7a2 + 3ab / 11a2 - 8b2 = 7c2 + 3cd / 11c2 - 8d2 (đpcm)
Đặt \(\frac{a}{b}=\frac{c}{d}=x\)\(\Rightarrow a=bx;c=dx\)
Thay vào vế trái ta có:
\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7b^2x^2+3b^2x}{11b^2x^2-8b^2}=\frac{b^2\left(7x^2+3x\right)}{b^2\left(11x^2-8\right)}=\frac{7x^2+3x}{11x^2-8}\)(1)
Thay vào vế trái ta có :
\(\frac{7c^2+3cd}{11c^2-8d^2}=\frac{7d^2x^2+3d^2x}{11d^2x^2-8d^2}=\frac{d^2\left(7x^2+3x\right)}{d^2\left(11x^2-8\right)}=\frac{7x^2+3x}{11x^2-8}\) (2)
Từ (1) và (2) => Vế phải bằng vế trái đẳng thức được chứng minh
\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
cho \(\frac{a}{b}=\frac{c}{d}\)Chứng minh
Đọc lại lý thuyết Bài 8 sgk/28
chỉ cần có lý thuyết a=k.b và c=k.d thay vào biểu thức là xong
Đặt a=kb, c=kd
Ta có:7*a^2+3*a*b/11*a^2-8b^2
=7*k^2*b^2+3*k*b^2/11*k^2*b^2-8*b^2
=k*b^2*(7*k+3)/b^2*(11*k^2-8)
= k*(7*k+3)/11*k^2-8 (1)
7*k^2*d^2+3*k*d^2/11*k^2*d^2-8*d^2
=k*d^2*(7*k+3)/d^2*(11*k^2-8)
=k*(7*k+3)/11*k^2-8 (2)
Từ (1) và (2)
=>7a^2+3ab/11a^2-8b^2=7c^2+3cd/11c^2-8d^2
=> DPCM
đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk\) và \(c=dk\)
thay vào biểu thức
\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{5k+3}{5k-3}\) (1)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{5k+3}{5k-3}\) (2)
Từ 1 và 2 suy ra đpcm
câu b tương tự bạn thay a=bk và c=dk rồi rút gọn như câu a là xong nha!
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)
\(=\frac{11a^2}{11c^2}=\frac{7a^2}{7c^2}=\frac{8b^2}{8d^2}=\frac{3ab}{3cd}=\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11c^2-8d^2}\)
\(\Rightarrow\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
câu hỏi tương tự nha bạn !!!