\(\frac{a}{b}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2020

7h30p r nha bạn :))

13 tháng 7 2020

ngày 14/7

27 tháng 3 2019

trong câu hỏi tương tự

18 tháng 5 2017

Bài 3:

a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

3A = \(1-\frac{1}{2^6}\)

=> 3A < 1 

=> A < \(\frac{1}{3}\)(đpcm)

b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)

4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)       (1)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

4B = \(3-\frac{1}{3^{99}}\)

=> 4B < 3

=> B < \(\frac{3}{4}\)   (2)

Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)

18 tháng 5 2017

bài 1:

5n+7 chia hết cho 3n+2

=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2

=> (15n + 21 - 15n - 10) chia hết cho 3n+2

=> 11 chia hết cho 3n + 2

=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}

Ta có bảng:

3n + 21-111-11
n-1/3 (loại)-1 (chọn)3 (chọn)-13/3 (loại)

Vậy n = {-1;3}

Bạn tham khảo ở link này nhé :

Câu hỏi của Tăng Minh Châu - Toán lớp 6 | Học trực tuyến

10 tháng 8 2016

a) \(\frac{1}{3}.\frac{-6}{13}.\frac{-9}{10}.\frac{-13}{36}\)

\(=\left(\frac{1}{3}.\frac{-9}{10}\right)\left(\frac{-6}{13}.\frac{-13}{36}\right)\)

\(=\frac{-3}{10}.\frac{1}{6}\)

\(=\frac{-1}{20}\)

b) \(\frac{-1}{3}.\frac{-15}{17}.\frac{34}{45}\)

\(=\frac{-1}{3}.\frac{-2}{3}\)

\(=\frac{2}{9}\)

c) \(\left(1-\frac{1}{5}\right)\left(\frac{-3}{10}+\frac{1}{5}\right)\)

\(=\frac{4}{5}.\frac{-1}{10}\)

\(=\frac{-2}{25}\)

d) \(A=\frac{1}{3}.\frac{4}{5}+\frac{1}{3}.\frac{6}{5}+\frac{2}{3}\)

\(=\frac{1}{3}\left(\frac{4}{5}+\frac{6}{5}\right)+\frac{2}{3}\)

\(=\frac{1}{3}.2+\frac{2}{3}\)

\(=\frac{2}{3}+\frac{2}{3}\)

\(=\frac{4}{3}\)

e)  \(11\frac{1}{4}-\left(2\frac{5}{7}+5\frac{1}{4}\right)\)

\(=\left(11\frac{1}{4}-5\frac{1}{4}\right)-2\frac{5}{7}\)

\(=6-2\frac{5}{7}\)

\(=5\frac{7}{7}-2\frac{5}{7}\)

\(=3\frac{2}{7}\)

a: \(=-9+\left\{-52:9\right\}=-9+\dfrac{-52}{9}=-\dfrac{133}{9}\)

b: \(=\dfrac{17}{7}+\left(\dfrac{-76}{63}\right):15\)

\(=\dfrac{17}{7}-\dfrac{76}{63}\cdot\dfrac{1}{15}=\dfrac{317}{135}\)

e: \(=\dfrac{-5}{13}\cdot\dfrac{7}{3}-\dfrac{2}{7}\cdot\dfrac{8}{13}+\dfrac{5}{13}\cdot\dfrac{1}{7}\)

\(=\dfrac{5}{13}\left(-\dfrac{7}{3}+\dfrac{1}{7}\right)-\dfrac{2}{7}\cdot\dfrac{8}{13}\)

\(=\dfrac{5}{13}\cdot\dfrac{-46}{21}-\dfrac{16}{91}=\dfrac{-278}{273}\)