\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=....=\frac{a_{201...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

đây là số mũ hả bạn

11 tháng 3 2016

ko pạn à, số ở dưới

25 tháng 12 2015

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2015}}{a_{2016}}=\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\)

=> \(\left(\frac{a_1}{a_2}\right)^{2015}=\left(\frac{a_2}{a_3}\right)^{2015}=...=\left(\frac{a_{2015}}{a_{2016}}\right)^{2015}=\left(\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\right)^{2015}=\frac{a_1.a_2...a_{2015}}{a_2.a_3...a_{2016}}=\frac{a_1}{a_{2016}}\)

=> \(\left(\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\right)^{2015}=\frac{a_1}{a_{2016}}\)(Đpcm)

10 tháng 10 2021

Ta có \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2020}}{a_{2021}}=\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\)(dãy tỉ só bằng nhau)

=> \(\frac{a_1}{a_2}=\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\)

<=>  \(\left(\frac{a_1}{a_2}\right)^{2020}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)

<=> \(\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}...\frac{a_1}{a_2}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)

<=> \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}...\frac{a_{2020}}{a_{2021}}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\) 

<=> \(\frac{a_1}{a_{2021}}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)  

24 tháng 8 2016

Ta có : \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\)

Đặt \(\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}=b\)thì \(\frac{a_1}{a_2}=b\left(1\right);\frac{a_2}{a_3}=b\left(2\right);\frac{a_3}{a_4}=b\left(3\right);...;\frac{a_{2008}}{a_{2009}}=b\left(2008\right)\)

Nhân (1),(2),(3),...,(2008) vế theo vế,ta có :

 \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2008}}{a_{2009}}=b^{2008}\)hay \(\frac{a_1}{a_{2009}}=\left(\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\right)^{2008}\)(đpcm)

18 tháng 11 2018

áp dụng t.c dãy tỉ số bằng nhau ta có:

\(\frac{a1}{a2}=\frac{a2}{a3}=\frac{a3}{a4}=.....=\frac{an}{an+1}=\frac{a1+a2+a3+....+an}{a2+a3+a4+...+an+1}\)

\(\frac{a1}{a2}\cdot\frac{a2}{a3}\cdot\frac{a3}{a4}\cdot...\cdot\frac{an}{an+1}=\frac{a1}{an+1}=\left(\frac{a1}{a2}\right)^n=\left(\frac{a1+a2+a3+....+an}{a2+a3+a4+...+an+1}\right)^n\)(vì từ 1 đến n có n chữ số)

=> đpcm