\(a+\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}\) thì a2b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2018

\(a+\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}\)

\(\Rightarrow a-b=\dfrac{1}{c}-\dfrac{1}{b}=\dfrac{b-c}{bc}\)(1)

\(\Rightarrow b-c=\dfrac{1}{a}-\dfrac{1}{c}=\dfrac{c-a}{ac}\)(2)

\(\Rightarrow c-a=\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{ab}\)(3)

Nhân vế theo vế của (1);(2);(3) ta được :

\(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(abc\right)^2}\)

\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)-\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(abc\right)^2}=0\)

\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)\left[1-\dfrac{1}{a^2b^2c^2}\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}a=b=c\\a^2b^2c^2=1\end{matrix}\right.\)(đpcm)

19 tháng 2 2018

c.ơn cậu

AH
Akai Haruma
Giáo viên
21 tháng 3 2017

Bài 1)

\(a,b,c\) là ba cạnh của tam giác nên :

\(a+b-c,b+c-a,c+a-b>0\)

Đặt \((a+b-c,b+c-a,c+a-b)=(x,y,z)\Rightarrow (a,b,c)=\left(\frac{x+z}{2},\frac{x+y}{2},\frac{y+z}{2}\right)\)

BĐT cần CM tương đương:

\((x+y)(y+z)(x+z)\geq 8xyz\) với \(x,y,z>0\)

Áp dụng BĐT AM-GM ta có:

\((x+y)(y+z)(x+z)\geq 2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}=8xyz\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z\Leftrightarrow a=b=c\)

AH
Akai Haruma
Giáo viên
21 tháng 3 2017

Bài 2)

Để đề bài chặt chẽ phải bổ sung điều kiện \(a,b,c>0\)

\((a^2+b^2+c^2)^2>2(a^4+b^4+c^4) \Leftrightarrow 2(a^2b^2+b^2c^2+c^2a^2) >a^4+b^4+c^4\)

\(\Leftrightarrow 4a^2b^2>(c^2-a^2-b^2)^2\Leftrightarrow (2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)>0\)

\(\Leftrightarrow [(a+b)^2-c^2][c^2-(a-b)^2]>0\)

\(\Leftrightarrow (a+b-c)(a+b+c)(c+b-a)(c+a-b)>0\)

\(\Leftrightarrow (a+b-c)(b+c-a)(c+a-b)>0\). Khi đó xảy ra các TH:

+) Cả ba nhân tử \(a+b-c,b+c-a,c+a-b>0\) đồng nghĩa với \(a,b,c\) là ba cạnh tam giác

+ ) Tồn tại một nhân tử nhỏ hơn $0$ sẽ kéo theo bắt buộc phải có thêm một nhân tử nhỏ hơn $0$ nữa. Giả sử \(\left\{\begin{matrix} a+b-c<0\\ b+c-a<0\end{matrix}\right.\Rightarrow 2b < 0\) (vô lý)

Vậy ta có đpcm

8 tháng 9 2018

a ) \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2+2.0=0\)

\(\Leftrightarrow a^2+b^2+c^2=0\)

Do \(a^2\ge0;b^2\ge0;c^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=0\) ( * )

Thay * vào biểu thức M , ta được :

\(M=\left(0-1\right)^{1999}+0^{2000}+\left(0+1\right)^{2001}\)

\(=-1^{1999}+0+1^{2001}\)

\(=-1+0+1\)

\(=0\)

Vậy \(M=0\)

8 tháng 9 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)

\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=\dfrac{1}{abc}\)

\(\Leftrightarrow\dfrac{bc+ac+ab-1}{abc}=0\)

\(\Leftrightarrow bc+ac+ab-1=0\)

\(\Leftrightarrow bc+ac+ab=1\)

\(a^2+b^2+c^2=1\)

\(\Rightarrow bc+ac+ab=a^2+b^2+c^2\)

\(\Rightarrow2bc+2ac+2ab=2a^2+2b^2+2c^2\)

\(\Rightarrow2a^2+2b^2+2c^2-2bc-2ac-2ab=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Do \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

\(P=\dfrac{a+b}{b+c}+\dfrac{b+c}{c+a}+\dfrac{c+a}{a+b}\)

\(\Rightarrow P=\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\)

\(\Rightarrow P=1+1+1=3\)

Vậy \(P=3\)

22 tháng 3 2018

1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

22 tháng 3 2018

2a)\(a^2+\dfrac{b^2}{4}\ge ab\)

\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)

\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)

\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)

b)Đã cm

c)\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)

Dấu bằng xảy ra khi a=b=1

29 tháng 11 2017

Có :

\(\left(a^2-bc\right)\left(b-abc\right)=\left(b^2-ac\right)\left(a-abc\right)\)

\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=abc^2\left(a-b\right)+abc\left(a^2-b^2\right)\)

\(\Leftrightarrow a^2b-a^3bc-b^2c+ab^2c^2=ab^2-ab^3c-a^2c+a^2bc^2\)

\(\Leftrightarrow ab\left(a-b\right)+c\left(a-b\right)\left(a+b\right)=abc^2\left(a-b\right)+abc\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)\left(ab+ac+bc\right)=abc\left(a-b\right)\left(a+b+c\right)\)

Chia 2 vế cho abc(a-b) khác 0 ta được :

\(\left(ab+ac+bc\right):abc=a+b+c\)

\(\Leftrightarrow\dfrac{ab}{abc}+\dfrac{bc}{abc}+\dfrac{ac}{abc}=a+b+c\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c\left(đpcm\right)\)

5 tháng 7 2017

1, \(a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=a^3+b^3+3a^3b+3ab^3+6a^2b^2\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+2ab+b^2\right)\)

\(=a^2-ab+b^2+3ab\left(a+b\right)^2\)

\(=a^2-ab+b^2+3ab\)

\(=a^2+2ab+b^2=\left(a+b\right)^2\)

\(=1\)

Vậy A = 1

Bài 2: ( đặt đề bài là A )

Đặt \(b+c-a=x,a+c-b=y,a+b-c=z\)

\(\Rightarrow a+b+c=x+y+z\)

\(\Leftrightarrow A=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

\(=3.2c.2a.2b=24abc\)

Vậy...

Bài 3:

+) Xét p = 3 có: \(p^2+2=11\in P\) ( t/m )

+) Xét \(p\ne3\) thì:

+ \(p=3k+1\Rightarrow p^2+2=\left(3k+1\right)^2+2=9k^2+6k+3⋮3\notin P\)

+ \(p=3k+2\Rightarrow p^2+2=\left(3k+2\right)^2+2=9k^2+12k+6⋮3\notin P\)

Vậy p = 3

Bài 4:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)

\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2c}{abc}+\dfrac{2a}{abc}+\dfrac{2b}{abc}=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2\left(a+b+c\right)}{abc}=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)

\(\Rightarrowđpcm\)

2 tháng 1 2018

Ta có:

(a+b+c)2=a2+b2+c2

a2+b2+c2+2ab+2ac+2bc=a2+b2+c2

2(ab+bc+ca)=0

ab+bc+ca=0

Ta có:

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

\(\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^3b^3c^3}=\dfrac{3}{abc}\)

\(\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=3\)

\(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

\(\left(ab+bc\right)^3-3ab^2c\left(ab+bc\right)+a^3c^3-3a^2b^2c^2=0\)

\(\left(ab+bc+ca\right)^3-3ca\left(ab+bc\right)\left(ab+bc+ca\right)-3ab^2c\left(-ac\right)-3a^2b^2c^2=0\)

\(0+3a^2b^2c^2-3a^2b^2c^2+0=0\)

0=0(luôn đúng)

Vậy BĐT được chứng minh

3 tháng 1 2018

Ta có : \(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)-a^2-b^2-c^2=0\)

\(\Rightarrow ab+bc+ca=0\)

\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

Chia cả 2 vế cho \(a^3b^3c^3\) , ta có :

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

a)

\(a^2+b^2+c^2+d^2+m^2-a(b+c+d+m)\)

\(=\frac{4a^2+4b^2+4c^2+4d^2+4m^2-4a(b+c+d+m)}{4}\)

\(=\frac{(a^2+4b^2-4ab)+(a^2+4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4m^2-4am)}{4}\)

\(=\frac{(a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2m)^2}{4}\geq 0\) (đpcm)

Dấu "=" xảy ra khi \(a=2b=2c=2d=2m\)

b)

Xét hiệu

\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{x+y}{xy}-\frac{4}{x+y}=\frac{(x+y)^2-4xy}{xy(x+y)}\)

\(=\frac{x^2+y^2-2xy}{xy(x+y)}=\frac{(x-y)^2}{xy(x+y)}\geq 0, \forall x,y>0\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\) (đpcm)

Dấu "=" xảy ra khi $x=y$

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

c)

Xét hiệu:

\((a^2+c^2)(b^2+d^2)-(ab+cd)^2\)

\(=(a^2b^2+a^2d^2+c^2b^2+c^2d^2)-(a^2b^2+2abcd+c^2d^2)\)

\(=a^2d^2-2abcd+b^2c^2=(ad-bc)^2\geq 0\)

\(\Rightarrow (a^2+c^2)(b^2+d^2)\geq (ab+cd)^2\) (đpcm)

Dấu "=" xảy ra khi \(ad=bc\)

d)

Xét hiệu:

\(a^2+b^2-(a+b-\frac{1}{2})=a^2+b^2-a-b+\frac{1}{2}\)

\(=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})\)

\(=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2\geq 0\)

\(\Rightarrow a^2+b^2\geq a+b-\frac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

17 tháng 5 2017

ta có \(\left(a+b+c\right)^2=\left(\dfrac{a}{\sqrt{b+c}}\sqrt{b+c}+\dfrac{b}{\sqrt{a+c}}\sqrt{a+c}+\dfrac{c}{\sqrt{a+b}}\sqrt{a+b}\right)^2\)

\(\le\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\right)\left(2a+2b+2c\right)\)

\(\Rightarrow VT=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\left(1\right)\)

lại có : ​a ,b ,c dương ​và \(a^2+b^2+c^2=1\)

\(\Rightarrow\left\{{}\begin{matrix}0< a^2< a< 1\\0< b^2< b< 1\\0< c^2< c< 1\end{matrix}\right.\Rightarrow a+b+c>a^2+b^2+c^2\left(2\right)\)

tu (1) va (2) \(\Rightarrow VT\ge\dfrac{a+b+c}{2}>\dfrac{a^2+b^2+c^2}{2}=\dfrac{1}{2}\)

12 tháng 5 2017

cái nhức nhối là a>b>c>0 và a2+b2+c2=1 -> khó bt nó rơi ở đâu