\(a+b+c=2009\) và \(\dfrac{1}{a}+\dfrac{1}{b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

Nhìn cái đề đã thấy người ra đề vui tính. \(a+b+c=2009\)

1 trong a;b;c là 2009 nghĩa là 2 số bằng 0

\(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\) hoán vị của \(\dfrac{1}{0};\dfrac{1}{0};\dfrac{1}{2009}\)

\(\dfrac{1}{0}=?\)

23 tháng 10 2018

Bạn bị nhầm rồi. Chẳng hạn:

1+(-1)+2009=2009

\(\dfrac{1}{1}+\dfrac{1}{-1}+\dfrac{1}{2009}=\dfrac{1}{2009}\)

NV
5 tháng 3 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{1}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{ac+bc+c^2}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac+bc+c^2}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b;c=1\\b=-c;a=1\\c=-a;b=1\end{matrix}\right.\)

Thay trường hợp nào vào ta cũng được kết quả như bài toán

5 tháng 3 2020

thanks

2 tháng 11 2018

\(B=\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}=\sqrt{\dfrac{2009^2+2008^2.2009^2+2008^2}{2009^2}}+\dfrac{2008}{2009}=\dfrac{\sqrt{2009^2+\left(2009-1\right)^2.2009^2+2008^2}}{2009}+\dfrac{2008}{2009}=\dfrac{\sqrt{2009^2+2009^4-2.2009.2009^2+2009^2+2008^2}+2008}{2009}=\dfrac{\sqrt{2009^4+2.2009^2-2.\left(2008+1\right).2009^2+2008^2}+2008}{2009}=\dfrac{\sqrt{2009^4+2.2009^2-2.2008.2009^2-2.2009^2+2008^2}+2008}{2009}=\dfrac{\sqrt{2009^4-2.2008.2009^2+2008^2}+2008}{2009}=\dfrac{\sqrt{\left(2009^2-2008\right)^2}+2008}{2009}=\dfrac{2009^2-2008+2008}{2009}=2009\in N\)

Vậy B có giá trị là một số tự nhiên

3 tháng 10 2019

Xét các số thực a, b, c thỏa mãn \(a+b+c=0\)

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2.\frac{a+b+c}{abc}}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)

Ta có:

\(B=\sqrt{1+2008^2+\frac{2008^2}{2009^2}}+\frac{2008}{2009}\)

\(=\sqrt{2008^2}.\sqrt{\frac{1}{2018^2}+\frac{1}{1^2}+\frac{1}{2009^2}}+\frac{2008}{2009}\)

\(=2008.\sqrt{\frac{1}{2018^2}+\frac{1}{1^2}+\frac{1}{\left(-2009\right)^2}}+\frac{2008}{2009}\)

\(=2008.\left|\frac{1}{2008}+1-\frac{1}{2009}\right|+\frac{2008}{2009}\)

\(=2008.\left(\frac{1}{2008}+1-\frac{1}{2009}\right)+\frac{2008}{2009}\)

\(=2008.\left(\frac{1}{2008}+1-\frac{1}{2009}+\frac{1}{2009}\right)\)

\(=2008.\frac{2009}{2008}=2009\in\text{N}\)

31 tháng 7 2018

\(A=\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}=\sqrt{2008^2+2.2008+1-2.2008+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}=\sqrt{2009^2-2.2009.\dfrac{2008}{2009}+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}=\sqrt{\left(2009-\dfrac{2008}{2009}\right)^2}+\dfrac{2008}{2009}=2009\)

Vậy , A có giá trị là số nguyên .

26 tháng 5 2017

cái chứng minh phải nhỏ hơn 1 chứ bạn ơi

31 tháng 10 2019

Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\Rightarrow abc=1\left(TMGT\right)\)

Ta có:
\(\frac{1}{a+2}=\frac{1}{\frac{x}{y}+2}=\frac{1}{\frac{x+2y}{y}}=\frac{y}{x+2y}=\frac{y^2}{xy+2y^2}\)

Tương tự:

\(\frac{1}{b+2}=\frac{z^2}{yz+z^2};\frac{1}{c+2}=\frac{x^2}{zx+x^2}\)

Ta có:

\(\frac{x^2}{xz+2x^2}+\frac{y^2}{xy+2y^2}+\frac{z^2}{yz+2z^2}\ge\frac{\left(x+y+z\right)^2}{2\left(x^2+y^2+z^2\right)+xy+yz+zx}\)

Mặt khác \(xy+yz+zx\le x^2+y^2+z^2\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)+xy+yz+zx\le3\left(x^2+y^2+z^2\right)\)

Rồi OK.Đến đây tịt r:( GOD nào vào thông não hộ ạ:(

1 tháng 11 2019

Sửa đề thành \(\le1\).Bài này cứ quy đồng full nha! Em có làm ở đây r: Câu hỏi của Nguyễn Linh Chi - Toán lớp 0 - Học toán với OnlineMath

26 tháng 10 2019

d,

Hàm số bậc nhất

26 tháng 10 2019

cấy ni đăng lâu rồi đúng cũng không có tick mồ