Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhìn cái đề đã thấy người ra đề vui tính. \(a+b+c=2009\)
1 trong a;b;c là 2009 nghĩa là 2 số bằng 0
\(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\) hoán vị của \(\dfrac{1}{0};\dfrac{1}{0};\dfrac{1}{2009}\)
và \(\dfrac{1}{0}=?\)
Bạn bị nhầm rồi. Chẳng hạn:
1+(-1)+2009=2009
\(\dfrac{1}{1}+\dfrac{1}{-1}+\dfrac{1}{2009}=\dfrac{1}{2009}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{1}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{ac+bc+c^2}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac+bc+c^2}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b;c=1\\b=-c;a=1\\c=-a;b=1\end{matrix}\right.\)
Thay trường hợp nào vào ta cũng được kết quả như bài toán
\(B=\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}=\sqrt{\dfrac{2009^2+2008^2.2009^2+2008^2}{2009^2}}+\dfrac{2008}{2009}=\dfrac{\sqrt{2009^2+\left(2009-1\right)^2.2009^2+2008^2}}{2009}+\dfrac{2008}{2009}=\dfrac{\sqrt{2009^2+2009^4-2.2009.2009^2+2009^2+2008^2}+2008}{2009}=\dfrac{\sqrt{2009^4+2.2009^2-2.\left(2008+1\right).2009^2+2008^2}+2008}{2009}=\dfrac{\sqrt{2009^4+2.2009^2-2.2008.2009^2-2.2009^2+2008^2}+2008}{2009}=\dfrac{\sqrt{2009^4-2.2008.2009^2+2008^2}+2008}{2009}=\dfrac{\sqrt{\left(2009^2-2008\right)^2}+2008}{2009}=\dfrac{2009^2-2008+2008}{2009}=2009\in N\)
Vậy B có giá trị là một số tự nhiên
Xét các số thực a, b, c thỏa mãn \(a+b+c=0\)
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2.\frac{a+b+c}{abc}}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
Ta có:
\(B=\sqrt{1+2008^2+\frac{2008^2}{2009^2}}+\frac{2008}{2009}\)
\(=\sqrt{2008^2}.\sqrt{\frac{1}{2018^2}+\frac{1}{1^2}+\frac{1}{2009^2}}+\frac{2008}{2009}\)
\(=2008.\sqrt{\frac{1}{2018^2}+\frac{1}{1^2}+\frac{1}{\left(-2009\right)^2}}+\frac{2008}{2009}\)
\(=2008.\left|\frac{1}{2008}+1-\frac{1}{2009}\right|+\frac{2008}{2009}\)
\(=2008.\left(\frac{1}{2008}+1-\frac{1}{2009}\right)+\frac{2008}{2009}\)
\(=2008.\left(\frac{1}{2008}+1-\frac{1}{2009}+\frac{1}{2009}\right)\)
\(=2008.\frac{2009}{2008}=2009\in\text{N}\)
\(A=\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}=\sqrt{2008^2+2.2008+1-2.2008+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}=\sqrt{2009^2-2.2009.\dfrac{2008}{2009}+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}=\sqrt{\left(2009-\dfrac{2008}{2009}\right)^2}+\dfrac{2008}{2009}=2009\)
Vậy , A có giá trị là số nguyên .
Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\Rightarrow abc=1\left(TMGT\right)\)
Ta có:
\(\frac{1}{a+2}=\frac{1}{\frac{x}{y}+2}=\frac{1}{\frac{x+2y}{y}}=\frac{y}{x+2y}=\frac{y^2}{xy+2y^2}\)
Tương tự:
\(\frac{1}{b+2}=\frac{z^2}{yz+z^2};\frac{1}{c+2}=\frac{x^2}{zx+x^2}\)
Ta có:
\(\frac{x^2}{xz+2x^2}+\frac{y^2}{xy+2y^2}+\frac{z^2}{yz+2z^2}\ge\frac{\left(x+y+z\right)^2}{2\left(x^2+y^2+z^2\right)+xy+yz+zx}\)
Mặt khác \(xy+yz+zx\le x^2+y^2+z^2\)
\(\Rightarrow2\left(x^2+y^2+z^2\right)+xy+yz+zx\le3\left(x^2+y^2+z^2\right)\)
Rồi OK.Đến đây tịt r:( GOD nào vào thông não hộ ạ:(