Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a/ Thì chứng minh ở dưới rồi nhé e
b/ Ta cần chứng minh
\(2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\)
\(\Leftrightarrow2abc\left(a+b+c\right)=0\)(đúng)
=> ĐPCM
c/ Ta có
\(\frac{\left(a^2+b^2+c^2\right)^2}{2}=\frac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{2}=a^4+b^4+c^4\)
Cái này là áp dụng câu a vô nhé e
Ta có:
a)
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2a^2c^2-2b^2c^2\)
\(=\left[\left(a+b+c\right)^2-2ab-2ac-2bc\right]^2-2a^2b^2-2b^2c^2-2a^2c^2\)
\(=4\left[ab+ac+bc\right]^2-2a^2b^2-2b^2c^2-2a^2c^2\)
\(=4\left(ab\right)^2+4\left(ac\right)^2+4\left(bc\right)^2-8abc\left(a+b+c\right)-2a^2b^2-2b^2c^2-2a^2c^2\)
\(=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
b)\(=2\left(ab+bc+ac\right)^2-4\left(abbc+abca+bcca\right)\)
\(=2\left(ab+bc+ac\right)^2-4abc\left(a+b+c\right)=2\left(ab+bc+ac\right)^2\)
c) \(\frac{\left(a^2+b^2+c^2\right)^2}{2}=\frac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{2}=\frac{a^4+b^4+c^4+a^4+b^4+c^4}{2}\)
\(=a^4+b^4+c^4\)
\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2\left(ab^2c+abc^2+a^2bc\right)=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow2\left(ab^2c+abc^2+a^2bc\right)=0\\ \Leftrightarrow abc\left(a+b+c\right)=0\left(đpcm;a+b+c=0\right)\)
1a) a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + b2 + c2
= ( a2 + 2ab +b2 ) + ( a2 + 2ac + c2 ) + ( b2 + 2bc + c2 )
= ( a + b )2 + ( a + c )2 + ( b + c )2
1b) 2.( ac - ab - bc + b2 ) + 2.( bc - ba - ac + a2 ) + 2.( ba - bc - ca + c2 )
= 2ac - 2ab - 2bc + 2b2 + 2bc - 2ab - 2ac +2a2 + 2ab - 2bc - 2ac + 2c2
= 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc
= ( a2 - 2ab + b2 ) + (a2 - 2ac + c2 ) + (b2 - 2bc + c2 )
= (a-b)2 + (a-c)2 + (b-c)2
\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)
\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)
\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
1. Ta có: \(ab+bc+ca=3abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Đặt \(\hept{\begin{cases}\frac{1}{a}=m\\\frac{1}{b}=n\\\frac{1}{c}=p\end{cases}}\) khi đó \(\hept{\begin{cases}m+n+p=3\\M=2\left(m^2+n^2+p^2\right)+mnp\end{cases}}\)
Áp dụng Cauchy ta được:
\(\left(m+n-p\right)\left(m-n+p\right)\le\left(\frac{m+n-p+m-n+p}{2}\right)^2=m^2\)
\(\left(n+p-m\right)\left(n+m-p\right)\le n^2\)
\(\left(p-n+m\right)\left(p-m+n\right)\le p^2\)
\(\Rightarrow\left(m+n-p\right)\left(n+p-m\right)\left(p+m-n\right)\le mnp\)
\(\Leftrightarrow m^3+n^3+p^3+3mnp\ge m^2n+mn^2+n^2p+np^2+p^2m+pm^2\)
\(\Leftrightarrow\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-pm\right)+6mnp\ge mn\left(m-n\right)+np\left(n-p\right)+pm\left(p-m\right)\)
\(=mn\left(3-p\right)+np\left(3-m\right)+pm\left(3-n\right)\)
\(\Leftrightarrow3\left(m^2+n^2+p^2\right)-3\left(mn+np+pm\right)+6mnp\ge3\left(mn+np+pm\right)-3mnp\)
\(\Leftrightarrow3\left(m^2+n^2+p^2\right)+9mnp\ge6\left(mn+np+pm\right)\)
\(\Leftrightarrow xyz\ge\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)
\(\Rightarrow M\ge2\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)
\(=\frac{5}{3}\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)\)
\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m^2+n^2+p^2+2mn+2np+2pm\right)\)
\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m+n+p\right)^2\)
\(\ge\frac{4}{3}\cdot3+\frac{1}{3}\cdot3^2=4+3=7\)
Dấu "=" xảy ra khi: \(m=n=p=1\Leftrightarrow a=b=c=1\)
a + b + c = 0 => (a + b + c)2 = 0 => a2 + b2 + c2 = -2(ab + bc + ca) (1)
=> (a2 + b2 + c2)2 = 4(ab + bc + ca)2 (2) => a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2 = 4(a2b2 + b2c2 + c2a2 + 2(ab2c + abc2 + a2bc)).
=> a4 + b4 + c4 = 2a4b2 + 2b2c2 + 2c2a2 + 8abc(a + b + c)
a) => a4 + b4 + c4 = 2(a4b2 + b2c2 + c2a2) (ĐPCM - a)
b) Từ (1) => 2(ab + bc + ca) = -(a2 + b2 + c2 )
=> 4(ab + bc + ca)2 = (a2 + b2 + c2 )2 = a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2.
Thay từ (a) 2a2b2 + 2b2c2 + 2c2a2 = a4 + b4 + c4
=> 4(ab + bc + ca)2 = 2(a4 + b4 + c4)
Hay a4 + b4 + c4 = 2(ab + bc + ca)2 (ĐPCM - b)
c) Từ (2) (a2 + b2 + c2)2 = 4(ab + bc + ca)2 = 4(a2b2 + b2c2 + c2a2 + 2(ab2c + abc2 + a2bc)) = 4(a4b2 + b2c2 + c2a2)+ 8abc(a + b + c)
=> (a2 + b2 + c2)2 = 4(a4b2 + b2c2 + c2a2) = 2(a4 + b4 + c4) (Từ a)
Hay a4 + b4 + c4 = 1/2 * (a2 + b2 + c2)2 (ĐPCM - c).
Em mới học lướp 7