K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NB
0
VM
0
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{ab+ac}{2}=\frac{ba+bc}{3}=\frac{ca+cb}{4}=\frac{\left(ab+ac\right)+\left(ba+bc\right)-\left(ca+cb\right)}{2+3-4}=\frac{2ab}{1}\)
Tương tự \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}=\frac{2bc}{5}\)
\(\frac{ab+ac}{2}=\frac{ba+bc}{3}=\frac{ca+cb}{4}=\frac{2ac}{3}\)
Do đó \(\frac{2ab}{1}=\frac{2bc}{5}\Rightarrow\frac{a}{1}=\frac{c}{5}\Rightarrow\frac{a}{3}=\frac{c}{15}\)
\(\frac{2bc}{5}=\frac{2ac}{3}\Rightarrow\frac{b}{5}=\frac{a}{3}\)
Do vậy \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
ab+ac2=ba+bc3=ca+cb4=(ab+ac)+(ba+bc)−(ca+cb)2+3−4=2ab1ab+ac2=ba+bc3=ca+cb4=(ab+ac)+(ba+bc)−(ca+cb)2+3−4=2ab1
Tương tự ab+ac2=bc+ba3=ca+cb4=2bc5ab+ac2=bc+ba3=ca+cb4=2bc5
ab+ac2=ba+bc3=ca+cb4=2ac3ab+ac2=ba+bc3=ca+cb4=2ac3
Do đó 2ab1=2bc5⇒a1=c5⇒a3=c152ab1=2bc5⇒a1=c5⇒a3=c15
2bc5=2ac3⇒b5=a32bc5=2ac3⇒b5=a3
Do vậy a3=b5=c15