Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+, 3a+2b chia hết cho 17
=> 9.(3a+2b) chia hết cho 17
=> 27a + 18b chia hết cho 17
Mà 17a và 17b đều chia hết cho 17
=> 27a+18b-17a-17b chia hết cho 17
=> 10a+b chia hết cho 17
+, 10a+b chia hết cho 17
=> 10a+b+17a+17b chia hết cho 17
=> 27a+18b chia hết cho 17
=> 9.(3a+2b) chia hết cho 17
=> 3a+2b chia hết cho 17 ( vì 9 và 17 là 2 số nguyên tố cùng nhau )
Vậy ............
Tk mk nha
\(3a+2b⋮17\)\(\left(a,b\inℤ\right)\)
\(\Rightarrow10\cdot\left(3a+2b\right)⋮17=\left(30a+20b\right)⋮17\)
\(10a+b⋮17\)
\(\Rightarrow3\cdot\left(10a+b\right)⋮17=\left(30a+3b\right)⋮17\)
\(\Rightarrow\left(30a+20b\right)-\left(30a+3b\right)⋮17\)
\(\Rightarrow30a+20b-30a-3b⋮17\)
\(\Rightarrow17b⋮17\)
Có \(17⋮17\)nên \(10a+b⋮17\)
Ta có \(5a+2b⋮17\)=> \(12\left(5a+2b\right)⋮17\)
<=> \(60a+24b⋮17\)
<=> \(\left(51a+17b\right)+\left(9a+7b\right)⋮17\)
<=> \(9a+7b⋮17\) \(\left(do51a+17b⋮17\right)\)
Theo bài ra ta có:
(3a+2b) ⋮ 17 => 3a +2b +17a ⋮ 17 (vì 17⋮ 17)
=> 10a +2b ⋮ 17
<=> 2.(10a +b ) ⋮ 17
Mà (2;7)=1
=> 10a+b ⋮ 17 => Đpcm
Vậy (3a +2b) ⋮ 17 <=> (10a +b)⋮ 17
Nếu \(a-11b+3c⋮17\Rightarrow2\left(a-11b+3c\right)⋮17\)
\(\Rightarrow2a-22b+6c⋮17\Rightarrow\left(2a-5b+6c\right)-17b⋮17\)
Vì\(17b⋮17\Rightarrow2a-5b+3c⋮17\)
Vì \(a-11b+3c\) chia hết cho 17 => \(2\left(a-11b+3c\right)\)chia hết cho 17 => \(2a-22b+6c\)
Ta có: \(\left(2a-22b+6c\right)-\left(2a-5b+6c\right)=17b\)chia hết cho 17
Mà 2a - 22b + 6c chia hết cho 17 nên => 2a - 5b + 6c chia hết cho 17
Vậy 2a - 5b + 6c chia hết cho 17.
a) Ta có: 3a+2b⋮17
⇔8(3a+2b)⋮17
Ta có: 8(3a+2b)+10a+b
=24a+16b+10a+b
=34a+17b
=17(2a+b)⋮17
hay 8(3a+2b)+(10a+b)⋮17
mà 8(3a+2b)⋮17(cmt)
nên 10a+b⋮17(đpcm)
b) Ta có: \(F\left(0\right)=a\cdot0^2+b\cdot0+c=c\)
\(F\left(1\right)=a\cdot1^2+b\cdot1+c=a+b+c\)
\(F\left(-1\right)=a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=a-b+c\)
mà F(x)⋮3
nên F(0)⋮3; F(1)⋮3; F(-1)⋮3
hay c⋮3(đpcm 3); F(1)+F(-1)⋮3; F(1)-F(-1)⋮3
Ta có: F(1)+F(-1)⋮3(cmt)
⇔a+b+c+a-b+c⋮3
hay 2a+2c⋮3
⇔a+c⋮3
mà c⋮3(cmt)
nên a⋮3(đpcm1)
Ta có: F(1)-F(-1)⋮3(cmt)
⇔a+b+c-a+b-c⋮3
hay 2b⋮3
mà 2\(⋮̸\)3
nên b⋮3(đpcm2)
Đặt :
\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có :
\(VT=\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)\(\left(2\right)\)
\(VP=\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)
\(\hept{\begin{cases}\left(x-y\right)⋮17\Rightarrow\left(x-y\right)=17.p...voi...P\in Z\\A-B=x^2y-xy^2=xy\left(x-y\right)=17.p.\left(xy\right)⋮17\Rightarrow dccm\Leftrightarrow dpcm\end{cases}}\)
\(2a+3b⋮17\Leftrightarrow2a+3b+17\left(2a+b\right)⋮17\Leftrightarrow36a+20b=4\left(9a+5b\right)⋮17\)
\(\text{mà 17 và 4 là 2 số nguyên tố cùng nhau nên:}9a+5b⋮17\)
\(\text{vậy:}2a+3b⋮17\Leftrightarrow9a+5b⋮17\)
\(2a+3b⋮17\Rightarrow8a+12b⋮17\)
\(\Rightarrow8a+9b+9a+5b\)
\(=17a+17b=17\left(a+b\right)⋮17\)
mà \(8a+12b⋮17\Rightarrow9a+5b⋮17\)
và ngược lại nếu \(9a+5b⋮17\Leftrightarrow2a+3b⋮17\)