K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VT
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
T
4
LD
0
17 tháng 6 2022
b: Nếu AB>AC thì \(\widehat{B}< \widehat{C}\)
mà \(\widehat{B}+\widehat{C}=90^0\)
nên \(\widehat{C}>45^0\)
mà \(\widehat{HAC}=90^0-\widehat{C}\)
nên \(\widehat{HAC}< 45^0< \widehat{C}\)
hay HC<AH
NH
1
9 tháng 7 2016
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
Có:
- \(\frac{ab+ad}{b\left(b+d\right)}< \frac{ab+bc}{b\left(b+d\right)}\)
\(\Rightarrow\frac{a\left(b+d\right)}{b\left(b+d\right)}< \frac{b\left(a+c\right)}{b\left(b+d\right)}\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
- \(\frac{ad+cd}{d\left(b+d\right)}< \frac{bc+cd}{d\left(b+d\right)}\)
\(\Rightarrow\frac{d\left(a+c\right)}{d\left(b+d\right)}< \frac{c\left(b+d\right)}{d\left(b+d\right)}\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Giải:
Gọi \(ƯCLN\left(a^2;a+b\right)=1\)
\(\Rightarrow\left\{\begin{matrix}a^2⋮d\\a+b⋮d\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a\left(a+b\right)⋮d\\a^2+ab⋮d\end{matrix}\right.\)
\(\Rightarrow a^2+ab-a^2⋮d\)
\(\Rightarrow ab⋮d\)
Mà \(\left(a;b\right)=1\Rightarrow\left\{\begin{matrix}a⋮d\\b⋮d\end{matrix}\right.\)
Nếu \(a⋮d\)
\(\Rightarrow a+b⋮d\Rightarrow b⋮d\)
\(\Rightarrow d\inƯC\left(a;b\right)\)
Mà \(ƯCLN\left(a;b\right)=1\Rightarrow d=1\RightarrowƯCLN\left(a^2;a+b\right)=1\)
Nếu \(b⋮d\)
\(\Rightarrow a+b⋮d\Rightarrow a⋮d\)
\(\Rightarrow d\inƯC\left(a;b\right)\)
Mà \(ƯCLN\left(a;b\right)=1\Rightarrow d=1\RightarrowƯCLN\left(a^2;a+b\right)=1\)
Vậy nếu \(\left(a;b\right)=1\) thì \(\left(a^2;a+b\right)=1\) (Đpcm)