K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

Ta có: 

\(a^2+b^2\ge25\)

\(\Leftrightarrow a^2+b^2+2\left(a-3\right)\left(b-3\right)-25\ge2\left(a-3\right)\left(b-3\right)\ge0\)

\(\Leftrightarrow\left(a+b-7\right)\left(a+b+1\right)\ge0\)

\(\Leftrightarrow a+b\ge7\)

6 tháng 3 2019

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a+b+c}{b+c}-1+\frac{a+b+c}{c+a}-1+\frac{a+b+c}{a+b}-1\ge\frac{3}{2}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\)

\(\Leftrightarrow\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)

Áp dụng bđt Co-si cho 3 số

\(\hept{\begin{cases}\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge3\sqrt[3]{\frac{1}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}}\end{cases}}\)

Nhân 2 vế vào sẽ đc dpcm

Dấu "=" khi a  = b = c

7 tháng 3 2019

Anh Incursion:Em có cách khác!Anh check giúp ạ.

Chuẩn hóa a + b + c = 3.Thì BĐT trở thành:

\(\frac{a}{3-a}+\frac{b}{3-b}+\frac{c}{3-c}\ge\frac{3}{2}\)

Ta sẽ c/m: \(\frac{a}{3-a}\ge\frac{3}{4}\left(a-1\right)+\frac{1}{2}\).

Thật vậy,xét hiệu hai vế: \(VT-VP=\frac{3\left(a-1\right)^2}{4\left(3-a\right)}\).Do a + b + c = 3 và a,b,c > 0 hiển nhiên ta có: a< 3 tức là 3 - a > 0

Suy ra \(VT-VP=\frac{3\left(a-1\right)^2}{4\left(3-a\right)}\ge0\).Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm.

Dấu "=" xảy ra khi a = b = c

20 tháng 6 2018

a   \(2a>b;2a>0\Rightarrow2a+2a>b+0\Rightarrow4a>b\)

b   \(4a^2+b^2=5ab\Rightarrow4a^2+b^2-5ab=0\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\Rightarrow\left(4a-b\right)\left(a-b\right)=0\Rightarrow\hept{\begin{cases}4a-b=0\Rightarrow4a=b\\a-b=0\Rightarrow a=b\end{cases}}\)

20 tháng 6 2018

c  \(20=4\cdot5>11\)mà \(2\cdot5=10>11\)đâu 

sai đề r

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

15 tháng 4 2018

1a)Xét a2 + 5 - 4a =a2 - 4a + 4+1=(a - 2)2+1\(\ge\)1 hay (a -2)+ 1 > 0 

\(\Rightarrow\)Đpcm

  b)Xét 3(a+ b+ c2) -(a + b +c)=3a+ 3b+ 3c- a- b- c- 2ab - 2ac - 2bc

                                                  =2a+ 2b+ 2c - 2ab - 2ac - 2bc

                                                  =(a - b)+ (a - c)+ (b - c)2\(\ge\)0 (với mọi a,b,c)

\(\Rightarrow\)Đpcm

2)Xét A=\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+c+b\right)=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)

         áp dụng cô-sy

\(\Rightarrow\)A\(\ge\)9

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\)

3 tháng 5 2017

2 ) đề sai rùi bạn ơi ! Mk giải theo đề đúng nka !! 

CMR : nếu  \(a+b>1\)thì  \(a^2+b^2>\frac{1}{2}\)

 Ta có : \(a+b>1>0\)                                                                     ( 1 )

Bình phương hai vế ta được : 

                \(\left(a+b\right)^2>1\)\(\Leftrightarrow a^2+2ab+b^2>1\)                    ( 2 )

Mặt khác :

                 \(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2-2ab+b^2\ge0\)                   ( 3 )

Cộng từng vế của (2) và (3) , ta được: 

                  \(2a^2+2b^2>1\)\(\Leftrightarrow2\left(a^2+b^2\right)>1\)\(\Leftrightarrow a^2+b^2>\frac{1}{2}\left(dpcm\right)\)

tk cko  mk nka vì công ngồi đánh máy tình !!! 

         

3 tháng 5 2017

Biết   \(a>b\)và   \(b>2\)\(\Leftrightarrow a>2\)

Ta có :  \(a>2\)

\(\Leftrightarrow-3a< -6\)( Nhân 2 vế với -3 bất đẳng thức đổi chiều )

\(\Leftrightarrow-3a+6< 0\)(Cộng 2 vế với 6)

\(\Leftrightarrowđpcm\)

tk nka !1

10 tháng 4 2019

a) vì a≤ b

Nhân cả 2 vế của BĐT với -2

=> -2a≥ -2b

Cộng cả 2 vế của BĐT với 3

=> -2a+3 ≥ -2b+3

b) vì a>b

Nhân cả 2 vế với 2

=> 2a>2b

Cộng cả 2 vế với (-5)

=> 2a -5> 2b-5

c) vì a>b

Nhân cả 2 vế với 5

=> 5a>5b (1)

Vì 0> -1

Cộng cả 2 vế với 5b

=> 5b> 5b -1 (2)

Từ (1) và (2) => 5a> 5b-1

11 tháng 4 2019

a/ a ≤ b =>-2a ≥ -2b => -2a+3 ≥ -2b+3

b/ a > b => 2a > 2b => 2a-5 > 2b-5

c/ a > b => 5a > 5b

0 > -1

=> 5a + 0 > 5b + (-1)

<=> 5a > 5b -1

11 tháng 3 2017

a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3

b vì a>3 => a+2>3+2  =>a+2>5

c  vì m>n =>m-n>n-n=>m-n>0

đ vì m-n=0 =>m-n+n>0+n=>m>n

e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)

  vì -4>-5 => m-4>m-5 (2)

từ (1) và (2) =>m-5<n-4