K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

3a+5b+2/5a+8b+3 là phân số tối giản

31 tháng 10 2021

gọi UCLN của (5a+3b ; 13a+8b)=d (d thuộc N)

\(\Rightarrow\left(5a+3b\right)⋮d\Rightarrow\left(65a+39b\right)⋮d\)

\(\Rightarrow\left(13a+8b\right)⋮d\Rightarrow\left(65a+40b\right)⋮d\)

\(\Rightarrow\left(65a+40b\right)-\left(65a+39b\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

mà (a ; b)=1. Vậy (a ; b)=(5a+3b ; 13a + 8b)

Vậy nếu (a;b)=1 thì (5a+3b ; 13a + 8b)=1 (đpcm)

15 tháng 9 2015

a) Xét hiệu 2. (5a + 9b) - 5.(2a + b) = 10a + 18b - (10a + 5b) = (10a - 10a) + (18b - 5b) = 13b 

Vì 5a + 9b chia hết cho 13 => 2(5a + 9b) chia hết cho 13

13b chia hết cho 13 

=> 5.(2a + b) chia hết cho 13 (Áp dụng tính chất a ; b chia hết cho c thì a - c chia hết cho c)

mà (5; 13) = 1 nên 2a+ b chia hết cho 13

b) Xét hiệu 7.(6a + 7b) - 6(7a + 5b) = 42a + 49b - (42a + 30b) = (42a - 42a) + (49b - 30b) = 19b 

=> 7.(6a + 7b) = 19b + 6(7a + 5b)

Vì 19b chia hết cho 19 và 6.(7a + 5b) chia hết cho 19 ( do 7a + 5b chia hết cho 19)

Nên 7.(6a + 7b) chia hết cho 19. ta có (7; 19) = 1 => 6a + 7b chia hết cho 19

*) Với bài tập này: Áp dụng tính chất x; y chia hết cho z thì x- y ; x + y chia hết cho z

Muốn vậy, ta nhân vào hai biểu thức đã cho số thích hợp nhằm khử a hoặc b (bài trên : khử đi a) để kết quả thu được là bội của số cần chứng minh chia hết 

15 tháng 9 2015

Quên thanks Trần Đức Thắng , mà làm câu Nếu 7a + 5b chia hết cho 19 thì 6a + 7b chia hết cho 19 luôn đi

23 tháng 5 2018

a, n(n+1)(n+2)

nhận xét : 

n; n+1; n+2 là 3 số tự nhiên liên tiếp

=> có 1 số chia hết cho 2 và có 1 số chia hết cho 3             (1)

ƯCLN(2;3) = 1   (2)

(1)(2) => n(n+1)(n+2) \(⋮\) 6

b, 3a + 5b \(⋮\) 8

=> 5(3a + 5b) \(⋮\) 8

=> 15a + 25b \(⋮\) 8

3(5a + 3b) = 15a + 9b

xét hiệu : 

(15a + 25b) - (15a + 9b)

= 15a + 25b - 15a - 9b

= (15a - 15a) + (25b - 9b)

= 0 + 16b

= 16b và (3;5) = 1

=> 5a + 3b \(⋮\) 8

c, làm tương tự câu b