Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a2 = bc
<=> a . a = b .c
<=> \(\frac{a}{b}=\frac{c}{a}\Leftrightarrow\frac{b}{a}=\frac{a}{c}\)
Áp dụng t/c dãy tỉ số = nhau , ta có
\(\frac{b}{a}=\frac{a}{c}=\frac{a+b}{a+c}\)(1)
\(\frac{b}{a}=\frac{a}{c}=\frac{a-b}{c-a}\)(2)
(1),(2) \(\Leftrightarrow\frac{a+b}{a+c}=\frac{a-b}{c-a}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)
ta có (a+b)*(c-a)= ac+bc-a2-ab(1)
(a-b)*(c+a)= ac-bc+a2-ab(2)
bỏ ac và -ab ở (1)(2) có
(1)= bc - a2 =0
(2)= a2 - bc = 0
=> Đpcm
Đặt \(a^2=bc=k\Rightarrow\frac{a}{b}=\frac{c}{a}=k\Rightarrow\hept{\begin{cases}a=kb\\c=ka\end{cases}}\). Thay vào,ta có:
\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+a}{c-a}=\frac{ka+a}{ka-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Do (1) = (2) suy ra \(\frac{a+b}{a-b}=\frac{c+a}{c-a}^{\left(đpcm\right)}\)
Ta có: \(\frac{a}{b}=\frac{b}{c}\Rightarrow b^2=ac\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\left(đpcm\right)\)
Đặt \(\frac{a}{b}=\frac{b}{c}=k\) =>\(\hept{\begin{cases}a=bk\\b=ck\end{cases}}\) Do đó: \(\frac{a}{c}=\frac{bk}{c}=\frac{ck.c}{c}=k^2\) (1) \(\frac{a^2+b^2}{b^2+c^2}=\frac{\left(bk\right)^2+b^2}{\left(ck\right)^2+c^2}=\frac{b^2k^2+b^2}{c^2k^2+c^2}=\frac{b^2.\left(k^2+1\right)}{c^2.\left(k^2+1\right)}=\frac{b^2}{c^2}=\frac{\left(ck\right)^2}{c^2}=\frac{c^2k^2}{c^2}=k^2\) (2) Từ (1) và (2) suy ra: \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
=> ( a + b ) ( c -a ) = ( a - b ) ( c + a )
=> a ( c - a ) + b ( c -a ) = c ( a - b ) + a ( a - b )
=> ac - aa + bc - ab = ac - bc + aa - ab
=> - aa - aa = - bc - bc
=> - 2 . a 2 = - 2 . bc
=> a 2 = bc
Vậy \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)thì a 2 = bc
\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}=\frac{a+c}{b+a}=\frac{c-a}{a-b}\)
\(\Rightarrow\left(a+b\right)\left(c-a\right)=\left(a+c\right)\left(a-b\right)\Rightarrow\frac{a+b}{a-b}=\frac{a+c}{c-a}\)
=>đpcm
a) Ta có: \(\frac{a+2}{a-2}=\frac{b+3}{b-3}.\)
\(\Leftrightarrow\frac{a+2}{b+3}=\frac{a-2}{b-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a+2+a-2}{b+3+b-3}=\frac{2a}{2b}=\frac{a}{b}\) (1)
\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a}{b}=\frac{4}{6}=\frac{2}{3}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{2}{3}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}\left(đpcm\right).\)
Chúc bạn học tốt!
Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc
Suy ra :
\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Mặt khác : ad < bc => ad + cd < bc + cd
\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Vậy : ....
b, Theo câu a ta lần lượt có :
\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)
\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)
\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)
Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)
a2=bc=>a.a=bc=>\(\frac{a}{b}=\frac{c}{a}\)
Đặt \(\frac{a}{b}=\frac{c}{a}=k\Rightarrow a=bk;c=ak\)
=>\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\)
\(\frac{c+a}{c-a}=\frac{ak+a}{ak-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\)
Vậy với a2=bc thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(=\frac{k+1}{k-1}\right)\)
\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\Leftrightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{a+c}=\frac{a-b}{c-a}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)