Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a1+a2+a3+...+an \(\equiv\) 0(mol 30)
=> a1+a2+a3+...+an chia hết cho 30
Ta lại có:
a1 \(⋮\)30 => a1.a1.a1.a1.a1 \(⋮\)30
a2 \(⋮\)30=> a2.a2.a2.a2.a2 \(⋮\)30
a3 \(⋮\)30=> a3.a3.a3.a3.a3 \(⋮\)30
.....
an \(⋮\)30=> an.an.an.an.an \(⋮\)30
Cộng vế với vế ta có:
ĐPCM
a\(\equiv\)b(mod m)<=>a=uk+m và b=vk+m
<=>ac=uk.c+m.c và bc=vk.c+m.c
<=>ac-bc=uk.c+m.c-vk.c-m.c=uk.c-vk.c
<=>ac\(\equiv\)bc(mod cm)
Vì \(a^2⋮2\)=) \(a^2\)là số chẵn
=) \(a\)là số chẵn =) \(a⋮2\)( Đpcm )
vì a^2 chia het cho 2 nen a là số chan
ma so chan thi se chia het cho 2
Ta có: \(a⋮b;b⋮a\left(a,b\ne0;a\ge b,b\ge a\right)\).
=> nếu a = b thì ví dụ a = 8, b = 8 thì a : b = 8 : 8 = 1; b : a = 8 : 8 = 1.
Vậy khi 2 số chia hết cho nhau thì phải bằng nhau => a = b.
a, chứng minh rằng : nếu (ab+cd+eg) \(⋮\)11 thì abcdeg \(⋮\)11
abcdeg=10000.ab+100.cd+eg=9999.ab+99.cd+(ab+cd+eg)
Vì 9999.ab chia hết cho11,99.cd chia hết cho 11 và ab+cd+ag chia hết cho 11
=> abcdeg chia hết cho 11(đcpcm)
Ta có :
\(A=1+5+5^2+...+5^{32}\)
\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{30}+5^{31}+5^{32}\right)\)
\(A=31+5^3\left(1+5+5^2\right)+...+5^{30}\left(1+5+5^2\right)\)
\(A=31+31.5^3+...+31.5^{30}\)
\(A=31\left(1+5^3+...+5^{30}\right)\) chia hết cho 31
Vậy \(A\) chia hết cho 31
\(a)\) Ta có :
\(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Leftrightarrow\)\(a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow\)\(ab+ac< ab+bc\)
\(\Leftrightarrow\)\(ac< bc\)
\(\Leftrightarrow\)\(a< b\)
Mà \(a< b\) \(\Rightarrow\) \(\frac{a}{b}< 1\)
Vậy ...