\(\equiv\)1 (mod 2)  thì a2 \(\eq...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

Bạn ơi. cái này mà là lớp 6 á???

14 tháng 10 2018

Ta có:

 a1+a2+a3+...+an \(\equiv\) 0(mol 30)

=>  a1+a2+a3+...+an chia hết cho 30

Ta lại có: 

a1 \(⋮\)30 => a1.a1.a1​.a1.a1 \(⋮\)30

a2 \(⋮\)30=> a2.a2.a2​.a2.a2 \(⋮\)30

a3 \(⋮\)30=> a3.a3.a3​.a3.a3 \(⋮\)30

.....

an \(⋮\)30=> an.an.an​.an.an \(⋮\)30

Cộng vế với vế ta có:

ĐPCM

22 tháng 10 2018

nhanh lên các bạn

10 tháng 5 2019

a\(\equiv\)b(mod m)<=>a=uk+m và b=vk+m

<=>ac=uk.c+m.c và bc=vk.c+m.c

<=>ac-bc=uk.c+m.c-vk.c-m.c=uk.c-vk.c

<=>ac\(\equiv\)bc(mod cm)

4 tháng 2 2019

 Ta có : a=1 (gt)=> a^2 =1.1=1=a

                       => a^3 =1.1.1=1=a

11 tháng 6 2017

Vì \(a^2⋮2\)=) \(a^2\)là số chẵn
=) \(a\)là số chẵn =) \(a⋮2\)( Đpcm )

11 tháng 6 2017

vì a^2 chia het cho 2 nen a là số chan

ma so chan thi se chia het cho 2 

30 tháng 10 2018

Ta có: \(a⋮b;b⋮a\left(a,b\ne0;a\ge b,b\ge a\right)\).

=> nếu a = b thì ví dụ a = 8, b = 8 thì a : b = 8 : 8 = 1; b : a = 8 : 8 = 1.

Vậy khi 2 số chia hết cho nhau thì phải bằng nhau => a = b.

3 tháng 2 2019

a, chứng minh rằng : nếu (ab+cd+eg)  \(⋮\)11 thì abcdeg \(⋮\)11

abcdeg=10000.ab+100.cd+eg=9999.ab+99.cd+(ab+cd+eg) 

Vì 9999.ab chia hết cho11,99.cd chia hết cho 11 và ab+cd+ag chia hết cho 11

=> abcdeg chia hết cho 11(đcpcm)

3 tháng 2 2019

a,có (ab+cd+eg) chia hết cho 11

=>ab chia hết cho 11=>ab*10000 chia hết cho 11 ;cd chia hết cho 11=>cd*100 chia hết cho 11 ;eg chia hết cho 11

abcdeg=ab*10000+cd*100+eg  

Từ 2điều kiện trên =>abcdeg chia hết cho 11

4 tháng 3 2018

Ta có : 

\(A=1+5+5^2+...+5^{32}\)

\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{30}+5^{31}+5^{32}\right)\)

\(A=31+5^3\left(1+5+5^2\right)+...+5^{30}\left(1+5+5^2\right)\)

\(A=31+31.5^3+...+31.5^{30}\)

\(A=31\left(1+5^3+...+5^{30}\right)\) chia hết cho 31 

Vậy \(A\) chia hết cho 31

4 tháng 3 2018

\(a)\) Ta có : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Leftrightarrow\)\(a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow\)\(ab+ac< ab+bc\)

\(\Leftrightarrow\)\(ac< bc\)

\(\Leftrightarrow\)\(a< b\)

Mà \(a< b\) \(\Rightarrow\) \(\frac{a}{b}< 1\)

Vậy ...