Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n>4 nữa nha bạn
Ta có:\(A=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)
\(=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n-4\right)\left(n^3-4n\right)\)
\(=n\left(n-3\right)\left(n^2-4\right)\)
\(=n\left(n-2\right)\left(n+2\right)\left(n-4\right)\)
Do n là số chẵn và n>4 nên đặt \(n=2k+2\left(k>1\right)\).
\(\Rightarrow A=\left(2k+2\right)\left(2k+4\right)\left(2k-2\right)2k\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)
\(=16\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)
Do \(\left(k-1\right)k\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên dương liên tiếp nên chúng chia hết cho 2.3.4=24
Vậy A chia hết cho 16*24=384(đpcm)
\(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)
Vì n là số lẻ => \(n-1;n+1;n+3\) là 3 số chẵn liên tiếp
Mà 3 số chẵn liên tiếp luôn \(⋮48\)
\(\Rightarrowđpcm\)
\(n^3+3n^2-n-3\)
\(=n^2\times\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\times\left(n^2-1\right)\)
\(=\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)\)
Vì n là số lẻ nên \(n⋮̸2\)
\(\Rightarrow n+3⋮2;n-1⋮2;n+1⋮2\)
\(\Rightarrow\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)⋮48\)
\(\Rightarrow n^3+3n^2-n-3⋮48\)
Ta có: \(n\in Z^+\)
\(\Rightarrow2^nchẵn\)
\(\Rightarrow2^{2^n}\equiv\left(-1\right)^{2^n}\equiv1\left(mod3\right)\)
\(4^n\equiv1^n\equiv1\left(mod3\right)\)
\(16\equiv1\left(mod3\right)\)
\(\Rightarrow2^{2^n}+4^n+16\equiv1+1+1\equiv3\equiv0\left(mod3\right)\)
\(\Rightarrow2^{2^n}+4^n+16⋮3\left(đpcm\right)\)
Vì \(2^n-1\)và \(2^n+1\)là 2 số lẻ liên tiếp
Đặt \(2^n-1=3k\)và \(2^n+1=3k+2\)\(k\inℕ\)
\(\Rightarrow\left(2^n-1\right).\left(2^n+1\right)=3k.\left(3k+2\right)\)
mà \(3k⋮3\)\(\Rightarrow3k.\left(3k+2\right)⋮3\)
hay \(A⋮3\left(đpcm\right)\)
Ta có
n2 + n + 1=(n+2)(n−1)+3
Giả sử n2+n+1 chia het cho 9
=>(n+2)(n−1)+3 chia hết cho 3
=> (n+2)(n-1) chia hết cho 3
Mà (n+2)-(n-1)=3 chia hết cho 3
=>n+2 và n-1 cùng chia hết cho 3
=>(n+2)(n−1) chia hết cho 9
=>n2 + n + 1chia 9 dư 3
=>vô lý
=>đpcm
A=(n^2-9)(n^2-1)
=(n-3)(n+3)(n-1)(n+1)
=(2k+1-3)(2k+1+3)(2k+1-1)(2k+1+1)
=2k(2k+2)(2k-2)(2k+4)
=16k(k+1)(k-1)(k+2)
Vì k;k+1;k-1;k+2là 4 số liên tiếp
nen k(k-1)(k+1)(k+2) chia hết cho 4!=24
=>A chia hết cho 384
\(b,n^2\left(n^4-1\right)\)
\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)
Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp
\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)
\(\Rightarrowđpcm\)
=>
Tham khảo
https://olm.vn/hoi-dap/tim-kiem?id=638956&subject=1&q=++++++++++CMR+(n4-1)+chia+het+cho+8,+v%E1%BB%9Bi+m%E1%BB%8Di+n+l%E1%BA%BB+b%E1%BA%A5t+k%C3%AC+++++++++