K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

)chứng minh rằng n^3-3n^2-n+3 chia hết cho 48 với mọi n là số tự nhiên lẻ.
A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A chia hết cho 16(*)
mặt khác:
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 (**)
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau).

28 tháng 3 2016

n3+3n2-n-3=(n-1)(n+1)(n+3)

Vì n là số nguyên lẻ nên n=2k+1 (k \(\in\) Z),khi đó:

n3+3n2-n-3=(n-1)9n+1)(n+3)=8k(k+1)(k+2)

Mà k(k+1)(k+2) luôn chia hết cho 2.3=6

=>8k(k+1)(k+2) chia hết cho 6.8=48

Vậy n3+3n2-n-3 chia hết cho 48(n là số nguyên lẻ)

6 tháng 8 2017

b) Giải:

Đặt \(A=n^3+3n^2-n-3\) ta có

\(A=n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n^2-1\right)\left(n+3\right)=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)

Thay \(n=2k+1\left(k\in Z\right)\) ta được:

\(A=\left(2k+2\right)2k\left(2k+4\right)=\) \(2\left(k+1\right).2k.2\left(k+2\right)\)

\(=8\left(k+1\right)k\left(k+2\right)\)

\(\left(k+1\right)k\left(k+2\right)\) là tích của \(3\) số tự nhiên nhiên tiếp nên chia hết cho \(6\) \(\Rightarrow A⋮8.6=48\)

Vậy \(n^3+3n^2-n-3\) \(⋮48\forall x\in Z;x\) lẻ (Đpcm)

Cảm ơn bạn rất nhiều! thanghoa

AH
Akai Haruma
Giáo viên
25 tháng 10 2018

Lời giải:

Do $n$ lẻ nên đặt $n=2k+1$ (\(k\in\mathbb{Z})\)

Ta có:

\(n^3+3n^2-n-3=n^2(n+3)-(n+3)=(n^2-1)(n+3)\)

\(=(n-1)(n+1)(n+3)=(2k+1-1)(2k+1+1)(2k+1+3)\)

\(=8k(k+1)(k+2)\)

\(k(k+1)(k+2)\) là tích 3 số nguyên liên tiếp nên \(k(k+1)(k+2)\vdots 3\)\(k(k+1)(k+2)\vdots 2\)

Mà $(2,3)=1$ nên \(k(k+1)(k+2)\vdots 6\)

\(\Rightarrow n^3+3n^2-n-3\vdots (8.6=48)\)

Ta có đpcm.

22 tháng 1 2017

bài nảy dể mình làm rồi ko cần nx nhé

4 tháng 10 2018
14 tháng 10 2016

\(=n\left(2n^2+3n+1\right)=n\left(n+1\right)\left(2n+1\right)\)

(Đặt thừa số chung nhẩm nghiệm đa thức bậc 2 có 1 nghiệm là -1, thực hiện phép chia đa thức bậc 2 cho n+1)

\(=n\left(n+1\right)\left[\left(n+2\right)+\left(n-1\right)\right]=n\left(n+1\right)\left(n+2\right)+\left(n-1\right)n\left(n+1\right)\)

Ta nhận thấy n(n+1)(n+2) và (n-1)n(n+1) là tích của 3 số tự nhiên liên tiếp. Mà trong 3 số tự nhiên liên tiếp bao giờ cũng có ít nhất 1 số chẵn => hai tích trên chia hết cho 2 => Tổng 2 tích trên chia hết cho 2 nên đa thức đã cho chia hết cho 2

Chứng minh bài toán phụ 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3:

Gọi 3 số tự nhiên liên tiếp là a; a+1; a+2

+ Nếu a chia hết cho 3 thì bài toán đúng

+ Nếu a chia 3 dư 1 thì a=3k+1 => a+2 = 3k+1+2=3k+3 chia hết cho 3

+ Nếu a chia 3 dư 2 thì a=3k+2 => a+1=3k+2+1=3k+3 chia hết cho 3

=> 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3

Áp dụng vào bài toán thì 2 tích trên chia hết cho 3 => tổng 2 tích chia hết cho 3 nên đa thức đã cho chia hết cho 3

Đa thức đã cho đồng thời chia hết cho cả 2 và 3 nên chia hết cho 2.3=6

14 tháng 10 2016

xin lỗi nha, bạn giải hình như là cách lớp lớn, mình chẳng hiểu gì hết. Sorry nhưng mình không chọn bạn được, xin lỗi nha!!!