K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 4 2022

Gọi \(d=ƯC\left(n^2+n;2n+1\right)\)

\(\Rightarrow2\left(n^2+n\right)-n\left(2n+1\right)⋮d\)

\(\Rightarrow n⋮2\)

\(\Rightarrow2n+1-2.n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow n^2+n\) và \(2n+1\) nguyên tố cùng nhau

25 tháng 12 2021

TL :

Vì \(n^2+n\) là số chẵn

và 2n+1 là số lẻ

 nên \(n^2+n\) và 2n+1 là hai số nguyên tố cùng nhau 

HT

25 tháng 12 2021

Mình có lấy 1 ví dụ cụ thể nhé ạ.

Ví dụ: 66 là số chẵn, nó chia hết cho 3

           99 là số lẻ, nó cũng chia hết cho 3

=> Trong 2 số đó có 1 số chẵn, 1 số lẻ thì nó vân có ƯC lớn hơn 1

Nên nó không thể nguyên tố cùng nhau.

Mong các bạn có thể đọc kĩ đầu bài ạ. Cảm ơn rất nhiều ạ!

          

1 tháng 1 2016

gọi d là ưc của 2.10n+1+2n+1 và 3.10n+1+3n+2.

 

vì: 3.10n+1+3n+2 chia hết cho d => 2(3.10n+1+3n+2) chia hết cho d

    2.10n+1+2n+1 chia hết cho d => 3(2.10n+1+2n+1) chia hết cho d

-> 6.10n+1+ 6n+4 - 6.10n+1+ 6n+3 chia hết cho d

-> 1 chia hết cho d -> d=1

=> ưcln(2.10n+1+2n+1;3.10n+1+3n+2)=1

 => 2.10n+1+2n+1 và 3.10n+1+3n+2 là hai số nguyên tố cùng nhau.

18 tháng 11 2017

 Câu trả lời hay nhất:  Gọi d = (12n + 1 , 30n + 2) 
=> 12n + 1 chia hết cho d và 30n + 2 chia hết cho d 
=> 5(12n + 1) - 2(30n + 2) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 
=> 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau

20 tháng 12 2018

Gọi:

d=UCLN(n,n-1)

Ta có: n chia hết cho d

n-1 chia hết cho d

=> n-(n-1) chia hết cho d

=> 1 chia hết cho d=> d=1

Vậy: n và n-1 ntcn 

b) gọi như vậy ta có:

7(2n+1)-14n+6 chia hết cho d

=> 1 chia hết cho d=>d=1

Vậy 2n+1 và 14n+6 ntcn

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

20 tháng 12 2018

Bài 1:

Ta có: \(2+2^2+2^3+...+2^{2010}=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right).\)

\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(2+2^2+2^3+...+2^{2010}=2\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{2008}\left(1+2+4\right)\)

\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)

bài 2:

Gọi d là ƯCLN của 2n+3 và 3n+4 \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}\Rightarrow}1⋮d\Rightarrow d=1}\)

\(\RightarrowƯCLN\left(2n+3;3n+4\right)=1\)

\(\Rightarrow\)2n+3 và 3n+4 là 2 số nguyên tố cùng nhau

20 tháng 10 2015

1.1+3+5+...+(2n-1)=225 
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1} = 225 
<=> (2n.2n):4 = 225 
<=> n2=225 
=> n = 15 và n = -15 
Vì n thuộc N* nên n = 15 thỏa mãn

20 tháng 10 2015

Giải: 
1+3+5+...+(2n-1)=225 
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1}/2 = 225 
<=> (2n.2n):4 = 225 
<=> n^2=225 
suy ra n = 15 và n = -15 
do n thuộc N* nên n = 15 thỏa mãn

gọi d > 0 là ước số chung của 7n+10 và 5n+7 
=> d là ước số của 5.(7n+10) = 35n +50 
và d là ước số của 7(5n+7)= 35n +49 
mà (35n + 50) -(35n +49) =1 
=> d là ước số của 1 => d = 1 
vậy 7n+10 và 5n+7 nguyên tố cùng nhau. 

tích nha

12 tháng 11 2017

mk xin làm câu b nhé mà A = chứ ko phải A : đâu nhé bạn.(^:mủ)

ta có: A = 5+5^2+5^3+...+5^100

vì 5 chia hết cho 5

    5^2 chia hết cho 5

    5^3 chia hết cho 5

    .......

    5^100 chia hết cho 5

    nên A = 5+5^2+5^3+...+5^100 cũng chia hết cho 5(vì các số hạng tronh tổng chia hết cho 5)

12 tháng 11 2017

a, gọi UCLN(2n+1,3n+1) là d

Ta có 2n+1 chia hết cho d=> 6n+3 chia hết cho d

3n+1 chia hết cho d=> 6n+2 chia hết cho     d 

=> (6n+3)-(6n+2)=1 chia hết cho d 

=> d là ước của 1

Vậy 2n+1 và 3n+1 là 2 số nt cùng nhau

25 tháng 11 2018

Gọi d thuộc ƯC(3n+2, 5n+3) thì

3(5n+3) - 5(3n+2) chia hết cho d => 1chia hết cho d => d = 1

Vì ƯCLN(3n+2, 5n+3)=1 nên hai số 3n+2 và 5n+3 là hai số nguyên tố cung nhau

25 tháng 11 2018

k cho mik nha

21 tháng 11 2017

Gọi d là ƯCLN của \(n+1\) và \(n^2+n+1\)

Ta có:\(n+1⋮d\Rightarrow\left(n+1\right)^2=n^2+2n+1⋮d\) ;  \(n^2+n+1⋮d\)

\(\Rightarrow\left(n^2+2n+1\right)-\left(n^2+n+1\right)=n⋮d\)

\(\Rightarrow\left(n+1\right)-n=1⋮d\Rightarrow d=1\)

Vậy \(n+1\)\(n^2+n+1\)là 2 số nguyên tố cùng nhau