Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) khi m=3
\(\left(1\right):y^2-2\left(3-1\right).y-\left(3+2\right)=0\)
\(\Leftrightarrow y^2-4y-5=0\)
\(\Leftrightarrow y^2-4y+4-9=0\)
\(\Leftrightarrow\left(y-2\right)^2=9=3^2\)
\(\Leftrightarrow\orbr{\begin{cases}y-2=3\\y-2=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=5\\y=-1\end{cases}}\)
b)
\(y^2-2\left(m-1\right)y-\left(m+2\right)=0\)
\(\Delta=\left[-2\left(m-1\right)\right]^2-4.1.\left[-\left(m+2\right)\right]\)
\(=4\left(m^2-2m+1\right)+4.\left(m+2\right)\)
\(=4m^2-8m+4+4m+8\)
\(=4m^2-4m+12\)
\(=4m^2-4m+1+11\)
\(=\left(2m-1\right)^2+11\ge11>0\)
=> pt luôn có hai nghiệm phân biệt
b) A=m3+3m2-m-3
=(m-1)(m2+m+1) +m(m-1) +2(m-1)(m+1)
=(m-1)(m2+m+1+m+2m+2)
=(m-1)(m2+4m+4-1)
=(m-1)[ (m+2)2-1 ]
=(m-1)(m+1)(m+3)
với m là số nguyên lẻ
=> m-1 là số chẵn(nếu gọi m là 2k-1 thì 2k-1-1=2k-2=2(k-1)(chẵn)
m+1 là số chẵn (tương tự 2k11+1=2k(chẵn)
m+3 là số chẵn (tương tự 2k-1+3=2k++2=2(k+2)(chẵn)
ta có:gọi m là 2k-1 thay vào A ta có:(với k là số nguyên bất kì)
A=(2k-2)2k(2k+2)
=(4k2-4)2k
=8k(k-1)(k+1)
k-1 ;'k và k+1 là 3 số nguyên liên tiếp
=> (k-1)k(k+1) sẽ chia hết cho 6 vì trong 3 số liên tiếp luôn có ít nhất 1 số chia hết cho 2 , 1 số chia hết cho 3
=> tích (k-1)k(k+1) luôn chia hết cho 6
=> A=8.(k-1)(k(k+1) luôn chia hết cho (8.6)=48
=> (m3+3m3-m-3) chia hết cho 48(đfcm)
a) Ta có: \(\Delta'=\left(-m\right)^2+m+1=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
=> pt luôn có 2 nghiệm phân biệt
Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-1\end{cases}}\)
Theo bài ra, ta có: \(\hept{\begin{cases}S=2x_1+3x_2+3x_1+2x_2=5\left(x_1+x_2\right)=5.2m=10m\\P=\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)=6x_1^2+13x_1x_2+6x_2^2=6\left(x_1+x_2\right)^2+x_1x_2\end{cases}}\)
\(\hept{\begin{cases}S=10m\\P=6.\left(2m\right)^2-m-1=24m^2-m-1\end{cases}}\)
Hai nghiệm 2x1 + 3x2 và 3x1 + 2x2 là nghiệm của pt \(x^2-10mx+24m^2-m-1=0\)
b) Theo bài ra, ta có:
\(\left|2x_1+3x_2\right|+\left|3x_1+2x_2\right|=30\)
<=> \(\left(2x_1+3x_2\right)^2+\left(3x_1+2x_2\right)^2+2\left|\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)\right|=900\)
<=> \(\left(2x_1+3x_2+3x_1+2x_2\right)^2-2\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)+2\left|24m^2-m-1\right|=900\)
<=> \(\left(10m\right)^2-2\left(24m^2-m-1\right)+2\left|24m^2-m-1\right|=900\)
<=> \(52m^2+2m+2+2\left|24m^2-m-1\right|=900\)
<=> \(\left|24m^2-m-1\right|=449-26m^2-m\)
<=> \(\orbr{\begin{cases}24m^2-m-1=449-26m^2-m\left(đk:m\ge\frac{1+\sqrt{97}}{48}hoặcx\le\frac{1-\sqrt{97}}{48}\right)\\24m^2-m-1=26m^2+m-449\left(đk:\frac{1-\sqrt{97}}{48}\le x\le\frac{1+\sqrt{97}}{48}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}50m^2=1\\2m^2+2m-448=0\end{cases}}\)<=> \(\orbr{\begin{cases}m=\pm\frac{1}{5\sqrt{2}}\\m^2+m-224=0\end{cases}}\) (\(\orbr{\begin{cases}m=\frac{1}{5\sqrt{2}}\left(ktm\right)\\m=-\frac{1}{5\sqrt{2}}\left(tm\right)\end{cases}}\))
<=> \(m^2+m-224=0\)(có 2 nghiệm ko thõa mãn -> tự tính)
a) \(\Delta'=m^2+m+1>0\forall m\). Do đó phương trình cho luôn có hai nghiệm phân biệt
Khi đó, theo hệ thức Viet: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-1\end{cases}}\)
Suy ra \(\hept{\begin{cases}5\left(x_1+x_2\right)=10m\\\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)=6\left(x_1+x_2\right)^2+x_1x_2=24m^2-m-1\end{cases}}\)
Áp dụng định lí Viet đảo ta có được phương trình:
\(X^2-10mX+24m^2-m-1=0\left(1\right)\) nhận \(2x_1+3x_2\) và \(3x_1+2x_2\) làm nghiệm.
b) Để \(\left(1\right)\) có nghiệm thì \(100m^2\ge4\left(24m^2-m-1\right)\Leftrightarrow4m^2+4m+4\ge0\left(đ\right)\)
Ta có \(\left|X_1\right|+\left|X_2\right|=30\Leftrightarrow\left(X_1+X_2\right)^2-2X_1X_2+2\left|X_1X_2\right|-900=0\)
\(\Rightarrow100m^2-2\left(24m^2-m-1\right)+2\left|24m^2-m-1\right|+900=0\)
+) Nếu \(24m^2-m-1\ge0\) thì \(100m^2+900=0\Leftrightarrow m=\pm3\)
+) Nếu \(24m^2-m-1< 0\) thì \(4m^2+4m+904=0\)(Vô nghiệm)
Vậy \(m=\pm3.\)
a)
Thay m=3 vào phương trình
\(y^2-4y-5=0\)
\(\Delta'=\left(-2\right)^2-1\cdot\left(-5\right)=4+5=9\) >0
=> PT có hai nghiệm \(y_1,y_2\)phân biệt
Ta có
\(y_1=\frac{-b'-\sqrt{\Delta}}{a}=\frac{2-\sqrt{9}}{1}=-1\)
\(y_2=\frac{-b'+\sqrt{\Delta}}{a}=\frac{2+3}{1}=5\)
b) \(y^2-2\left(m-1\right)y-\left(m+2\right)=0\)
\(\Delta=\left[-2\cdot\left(m-1\right)\right]^2+4\cdot\left(m+2\right)=4m^2-8m+4+4m+8\)
\(=4m^2-4m+12=\left(2m-1\right)^2+11>0\)
=< Phương trình có hai nghiệm pb với mọi m
\(a,8-2\sqrt{7}=\sqrt{7}^2-2\sqrt{7}+1^2=\left(\sqrt{7}-1\right)^2\)
\(b,8-2\sqrt{15}=\sqrt{5}^2-2.\sqrt{3}.\sqrt{5}+\sqrt{3}^2=\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(c,8+4\sqrt{3}=2^2+2.2.\sqrt{3}+\sqrt{3}^2=\left(2+\sqrt{3}\right)^2\)