Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(xy\right)^n=\left(xy\right)\left(xy\right)...\left(xy\right)=\left(x.x...x\right)\left(y.y...y\right)=x^ny^n\)(với n thừa số xy, n thừa số x, n thừa số y) (đpcm)
\(\left(\frac{x}{y}\right)^n=\left(\frac{x}{y}\right)\left(\frac{x}{y}\right)...\left(\frac{x}{y}\right)=\frac{x.x...x}{y.y...y}=\frac{x^n}{y^n}\)(với n thừa số \(\frac{x}{y}\), n thừa số x, n thừa số y) (đpcm)
1. \(3^x+3^{x+2}=2430\)
\(3^x\left(1+3^2\right)=2430\)
\(3^x.10=2430\)
\(3^x=243\)
\(3^x=3^5\)
\(x=5\)
2. \(2^{x+3}-2^x=224\)
\(2^x\left(2^3-1\right)=224\)
\(2^x.7=224\)
\(2^x=32\)
\(2^x=2^5\)
\(x=5\)
143. a) \(-6x^n.y^n.\left(-\dfrac{1}{18}x^{2-n}+\dfrac{1}{72}y^{5-n}\right)\)
\(=-6.\left(-\dfrac{1}{18}\right)x^n.x^{2-n}.y^n+\left(-6\right).\dfrac{1}{27}x^n.y^n.y^{5-n}\)
\(=\dfrac{1}{3}x^{n+2-n}y^n-\dfrac{2}{9}x^n.y^{n+5-n}\)
\(=\dfrac{1}{3}x^2y^n-\dfrac{2}{9}x^ny^5\)
b) Ta có: \(\left(5x^2-2y^2-2xy\right)\left(-xy-x^2+7y^2\right)\)
\(=5x^2\left(-xy\right)+5x^2.\left(-x^2\right)+5x^2.7y^2-2y^2.\left(-xy\right)-2y^2.\left(-x^2\right)-2y^2.7y^2-2xy.\left(-xy\right)-2xy\left(-x^2\right)-2xy.7y^2\)
\(=-5x^3y-5x^4+35x^2y^2+2xy^3+2x^2y^2-14y^4+2x^2y^2+2x^3y-14xy^3\)
Rút gọn các đa thức đồng dạng, ta có kết quả:
\(-5x^4-3x^3y+39x^2y^2-12xy^3-14y^4\)
Kết quả đã được xếp theo lũy thừa giảm dần của x
1.
\(\left(\dfrac{-2}{3}\right).0,75+1\dfrac{2}{3}:\left(\dfrac{-4}{9}\right)+\left(\dfrac{-1}{2}\right)^2\)
\(=\left(\dfrac{-2}{3}\right).\dfrac{3}{4}+\dfrac{5}{3}.\left(\dfrac{9}{-4}\right)+\dfrac{1}{4}\)
\(=-\dfrac{1}{2}+\dfrac{45}{-12}+\dfrac{1}{4}\)
\(=-\dfrac{6}{12}+\dfrac{-45}{12}+\dfrac{3}{4}\)
\(=\dfrac{-48}{12}\)
\(=-4\)
2.
a) \(\dfrac{3}{4}-\left(x+\dfrac{1}{2}\right)=\dfrac{4}{5}\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{3}{4}-\dfrac{4}{5}\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{-1}{20}\)
\(\Leftrightarrow x=\dfrac{-1}{20}-\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{-1}{20}-\dfrac{10}{20}\)
\(\Leftrightarrow x=\dfrac{-11}{20}\)
b) \(\left|x-\dfrac{2}{5}\right|+\dfrac{3}{4}=\dfrac{11}{4}\)
\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=\dfrac{11}{4}-\dfrac{3}{4}\)
\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=-2\Rightarrow x=-2+\dfrac{2}{5}=\dfrac{-8}{5}\\x-\dfrac{2}{5}=2\Rightarrow x=2+\dfrac{2}{5}=\dfrac{12}{5}\end{matrix}\right.\)
3.
a) \(\dfrac{16}{2^n}=2\)
\(\Leftrightarrow2^n=16:2\)
\(\Leftrightarrow2^n=8\)
\(\Leftrightarrow2^n=2^3\)
\(\Leftrightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{81}=-27\)
\(\Leftrightarrow\left(-3\right)^n=\left(-27\right).81\)
\(\Leftrightarrow\left(-3\right)^n=\left(-3\right)^3.\left(-3\right)^4\)
\(\Leftrightarrow\left(-3\right)^n=\left(-3\right)^7\)
\(\Leftrightarrow n=7\)
4. Ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\) (1)
\(\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\) (2)
Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Vì \(x-y+x=-49\) ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)
Vậy \(\left\{{}\begin{matrix}x=\left(-7\right).10=-70\\y=\left(-7\right).15=-105\\z=\left(-7\right).12=-84\end{matrix}\right.\)
Lời giải:
\(\frac{x+y}{y+z}=\frac{y+z}{z+t}=\frac{z+t}{t+x}=\frac{t+x}{x+y}\)
\(\Rightarrow (\frac{x+y}{y+z})^4=(\frac{y+z}{z+t})^4=(\frac{z+t}{t+x})^4=(\frac{t+x}{x+y})^4=\frac{x+y}{y+z}.\frac{y+z}{z+t}.\frac{z+t}{t+x}.\frac{t+x}{x+y}=1\)
\(\Rightarrow \left[\begin{matrix} \frac{x+y}{y+z}=\frac{y+z}{z+t}=\frac{z+t}{t+x}=\frac{t+x}{x+y}=1\\ \frac{x+y}{y+z}=\frac{y+z}{z+t}=\frac{z+t}{t+x}=\frac{t+x}{x+y}=-1\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=y=z=t\\ x+y+z+t=0\end{matrix}\right.\)
Nếu $x=y=z=t$ thì:
\(A=\left(\frac{y+z}{x+t}\right)^{2013}+\left(\frac{y+t}{x+y}\right)^{2014}=\left(\frac{x+x}{x+x}\right)^{2013}+\left(\frac{x+x}{x+x}\right)^{2014}=1+1=2\in\mathbb{Z}\)
Nếu $x+y+z+t=0$ thì:
\(y+z=-(x+t); y+t=-(x+y)\)
\(\Rightarrow A=(-1)^{2013}+(-1)^{2014}=(-1)+1=0\in\mathbb{Z}\)
Vậy biểu thức $A$ luôn có giá trị nguyên.
ko đúng đấy chứ
mình nhầm :
2) Vì /2x-3y/2015 lớn h+n hoặc bằng 0
và (x+y+x)2014 lớn hơn hoặc bằng 0 (với mọi x , y )
Mà /2x-3y/2015+ (x+y+z)2014 = 0
=) x+y+z = 0 (1)
=)2x- 3y = 0
=) x+y+x =0
=) 2(x+y+x)=0
=) 2x + 2y + 2x = 0
=) 3y+2y+3y = 0
=) 7y=0 =)y=0
thay y =0 vào (1)
=) ta có : x+y+x=0
=)x+0+x = 0
=) 2x=0 =) x=0
Vậy (x,y) = (0,0)
a,Ta có:
\(VT=\left(xy\right)^n=xy.xy.xy.....xy\)(có n số xy)
\(=x^ny^n=VP\)
Vậy \(\left(x.y\right)^n=x^ny^n\)
b, Ta có:
\(VT=\left(\dfrac{x}{y}\right)^n=\dfrac{x}{y}.\dfrac{x}{y}.\dfrac{x}{y}.....\dfrac{x}{y}\)(có n số \(\dfrac{x}{y}\))
\(=\dfrac{x.x.x.....x}{y.y.y.....y}=\dfrac{x^n}{y^n}=VP\)
Vậy \(\left(\dfrac{x}{y}\right)^n=\dfrac{x^n}{y^n}\)
Chúc bạn học tốt!!!
VT là j vậy p