Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Biến đổi vế trái ta có:
\(\left(x+a\right)\left(x+b\right)\)
= \(x^2+xb+xa+ab\)
= \(x^2+\left(a+b\right)x+ab=VP\)
Vậy đẳng thức đc CM
b) Biến đổi VT ta có:
\(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
= \(\left(x^2+xa+xb+ab\right)\left(x+c\right)\)
= \(x^3+x^2a+x^2b+x^2c+xab+xac+xbc+abc\)
= \(x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)= VP
Vậy đẳng thức đc CM
\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)\) là Vế Phải
\(ab+bc+ca-x^2\)là vế trái .
Biến đổi VP ta có :
\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)\)
\(=x^2-bx-ax+ab+x^2-cx-bx+bc+x^2-ax-cx+ab\)
\(=3x^2-2x\left(a+b+c\right)+\left(ab+bc+ca\right)\)
Thay \(a+b+c\)là \(2x\)ta được :
\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)\)= VP
\(=-x^2+ab+bc+ca=VT\)
=> đpcm
-
2 cái đó chả phải HĐT ai cũng biết hết
Có 2 cách
C1:VT nhân ra
C2:phân tích đa thúc thành nhân tử ở VP
a) ta có: \(\left(x+a\right)\left(x+b\right)\)
\(=x^2+xb+xa+ab\)
\(=x^2+\left(xb+xa\right)+ab\)
\(=x^2+\left(a+b\right)x+ab\left(ĐPCM\right)\)
Câu b) làm tương tự
HOK TOT
a)(x+a)(x+b)
=x(x+b)+a(x+b)
=x2+xb+ax+ab
=x2+(a+b).x+a.b
Vậy (x+a)(x+b)=x2+(a+b).x+a.b
b)(x+a)(x+b)(x+c)
=x(x+b)(x+c)+a(x+b)(x+c)
=(x2+xb)(x+c)+(ax+ab)(x+c)
=x2(x+c)+xb(x+c)+ax(x+c)+ab(x+c)
=x3+x2.c+x2.b+xbc+ax2+axc+abx+abc
=x3+(a+b+c).x2+(ab+bc+ca).x+abc
Vậy (x+a)(x+b)(x+c)=x3+(a+b+c).x2+(ab+bc+ca).x+abc
c)(a+b+c)(a2+b2+c2-ab-bc-ca)
=a(a2+b2+c2-ab-bc-ca)+b(a2+b2+c2-ab-bc-ca)+c(a2+b2+c2-ab-bc-ca)
=a3+ab2+ac2-a2.b-abc-a2.c+ba2+b3+bc2-ab2-b2.c-bca+ca2+cb2+c3-cab-bc2-c2.a
=a3+b3+c3 -abc-bca-cab
=a3+b3+c3 -3abc
Vậy (a+b+c)(a2+b2+c2-ab-bc-ca)=a3+b3+c3 -3abc