\(\left(n;k\right)\) với 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 9 2020

\(B=1!+2.2!+3.3!+...+k.k!\)

\(=1!+\left(3-1\right)2!+\left(4-1\right)3!+...+\left(k+1-1\right)k!\)

\(=1!+3!-2!+4!-3!+...+\left(k+1\right)!-k!\)

\(=\left(k+1\right)!-1\)

\(C=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{n}{n!}-\frac{1}{n!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

NV
23 tháng 9 2020

2.

Với \(n=0\Rightarrow1\ge\frac{1}{2}\) đúng

Với \(n=1\Rightarrow1\ge1\) đúng

Giả sử BĐT đúng với \(n=k\ge2\) hay \(k!\ge2^{k-1}\)

Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay \(\left(k+1\right)!\ge2^k\)

Thật vậy, ta có:

\(\left(k+1\right)!=k!\left(k+1\right)\ge2^{k-1}.\left(k+1\right)>2^{k-1}.2=2^k\) (đpcm)

1)Tìm nghiệm nguyên dương của phương trình: \(\left\{{}\begin{matrix}x+y+z=15\\x^3+y^3+z^3=495\end{matrix}\right.\) 2) Cho a,b,c là 3 số thực không âm, tìm GTLN của biểu thức: \(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\) 3) Giải phương trình: \(\sqrt{x-\sqrt{x^2-1}}=\dfrac{9\sqrt{2}}{4}\left(x-1\right)\sqrt{x-1}\) 4) Cho \(x^2+y^2+z^2=k\left(\forall k>0\right)\) cho trước. Tìm GTLN của...
Đọc tiếp

1)Tìm nghiệm nguyên dương của phương trình: \(\left\{{}\begin{matrix}x+y+z=15\\x^3+y^3+z^3=495\end{matrix}\right.\)

2) Cho a,b,c là 3 số thực không âm, tìm GTLN của biểu thức:

\(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)

3) Giải phương trình: \(\sqrt{x-\sqrt{x^2-1}}=\dfrac{9\sqrt{2}}{4}\left(x-1\right)\sqrt{x-1}\)

4) Cho \(x^2+y^2+z^2=k\left(\forall k>0\right)\) cho trước.

Tìm GTLN của \(A=k\left(xy+yz+xz\right)+\dfrac{1}{2}\left[x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2\right]\)

5) Chứng minh rằng:

\(\left(3a+2b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{45}{2}\)(Bài này quên điều kiện hay gì đó rồi, ae nếu thấy sai thì fix giùm)

6) Cho a là số thay đổi thỏa mãn: \(-1\le a\le1\)

Tìm GTLN của b sao cho bđt sau đúng:

\(2\sqrt{1-a^4}+\left(b-1\right)\left(\sqrt{1+a^2}-\sqrt{1-a^2}\right)+b-4\le0\)

7) Cho a,b,c dương thỏa mãn \(abc=1\). Chứng minh rằng:

\(\sum\dfrac{a}{\sqrt{8b^3+1}}\ge1\)

8) Cho a,b,c là các số thực dương. Chứng minh rằng:

\(\sum\dfrac{a^2-b^2}{\sqrt{b+c}}\ge0\)

5
15 tháng 12 2017

Bài 2: Restore : a;b;c không âm thỏa \(a^2+b^2+c^2=1\)

Tìm Min & Max của \(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)

Bài 4: Tương đương giống hôm nọ thôi : V

Bài 5 : Thiếu ĐK thì vứt luôn : V

Bài 7: Tương đương

( Hoặc có thể AM-GM khử căn , sau đó đổi \(\left(a;b;c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\) rồi áp dụng bổ đề vasile)

Bài 8 : Đây là 1 dạng của BĐT hoán vị

12 tháng 12 2017

@Ace Legona @Akai Haruma @Hung nguyen @Hà Nam Phan Đình @Neet

27 tháng 8 2017

Bùi Thị Vân Neet Ace Legona Nguyễn Huy Thắng Akai Haruma Nguyễn Quang Định Unruly Kid phynit Diệp Nguyễn Hoang Thiên Di Nguyễn Huy Tú ๖ۣۜĐặng♥๖ۣۜQuý Hà An

và những thánh khác nữa giúp mk với!!!

10 tháng 5 2023

Câu 1 \(k\) chạy từ 2 nhé, mình quên.

18 tháng 5 2023

câm mồm vào thằng nhóc

NV
14 tháng 6 2020

\(VT=\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\)

\(VT\ge\left(\frac{2\sqrt{x}}{2}\right)^n+\left(\frac{2\sqrt{y}}{2}\right)^n+\left(\frac{2\sqrt{z}}{2}\right)^n\)

\(VT\ge x^{\frac{n}{2}}+y^{\frac{n}{2}}+z^{\frac{n}{2}}\ge3\sqrt[3]{\left(xyz\right)^{\frac{n}{2}}}=3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2019

Lời giải:

Ta thực hiện chứng minh đẳng thức trên đúng bằng quy nạp

Với $n=2$: \((a+b)^=a^2+2ab+b^2=C^0_2a^2b^0+C^1_2ab+C^2_2a^0b^2\) (đúng)

................

Giả sử đẳng thức đúng đến $n=t$ $(t\in\mathbb{Z}>2$), tức là \((a+b)^t=\sum ^t_{k=0}C^k_ta^{t-k}b^k\)

Ta cần chứng minh nó cũng đúng với $n=t+1$. Thật vậy:

\((a+b)^{t+1}=(a+b)^t(a+b)=(a+b)\sum ^{t}_{k=0}a^{t-k}b^k\)

\(=C^0_ta^{t+1}+(C^1_t+C^0_t)a^tb+(C^2_t+C^1_t)a^{t-1}b^2+....+(C^t_t+C^{t-1}_t)ab^t+C^t_tb^{t+1}\)

\(=C^0_{t+1}a^{t+1}+C^1_{t+1}a^tb+C^2_{t+1}a^{t-1}b^2+....+C^t_{t+1}ab^t+C^{t+1}_{t+1}b^{t+1}\) (sử dụng đẳng thức \(C^k_n+C^{k+1}_n=C^{k+1}_{n+1}\)\(C^0_t=C^0_{t+1}=1; C^t_t=C^{t+1}_{t+1}=1\))

\(=\sum ^{t+1}_{k=0}C^{k}_{t+1}a^{t+1-k}b^k\)

Phép chứng minh hoàn tất. Ta có đpcm.

8 tháng 7 2019

chị Akai Haruma giúp em với